Description of fast matrix multiplication algorithm: ⟨10×28×32:5356⟩

Algorithm type

6X8Y8Z8+2XY18Z2+6X8Y8Z4+24X6Y8Z6+12X6Y6Z8+2X4Y12Z4+2X2Y15Z2+12X10Y4Z4+18X6Y6Z6+2X4Y12Z2+6X4Y10Z4+6X4Y4Z10+8X3Y12Z3+6X2Y12Z4+6X10Y4Z2+6X6Y8Z2+20X4Y8Z4+6X4Y2Z10+2X3Y12Z+4X3Y9Z4+4X2Y12Z2+6X2Y6Z8+6X2Y4Z10+6X3Y9Z3+2X2Y12Z+8XY12Z2+14X4Y8Z2+30X4Y6Z4+6X4Y4Z6+32X3Y8Z3+8X2Y10Z2+6X2Y6Z6+2XY12Z+2XY9Z4+4X5Y6Z2+16X3Y6Z4+10X2Y9Z2+2X2Y6Z5+2XY9Z3+6X6Y4Z2+2X5Y6Z+256X4Y4Z4+8X3Y8Z+24X3Y6Z3+22X2Y8Z2+12X2Y6Z4+4XY9Z2+2XY6Z5+16X5Y4Z2+8X2Y8Z+2X2Y6Z3+8X2Y4Z5+28XY9Z+8XY6Z4+30X6Y2Z2+8X5Y4Z+22X4Y4Z2+6X4Y2Z4+2X3Y6Z+40X3Y4Z3+20X3Y3Z4+206X2Y6Z2+36X2Y4Z4+2X2Y3Z5+42X2Y2Z6+8XY8Z+8XY6Z3+8XY4Z5+20X5Y2Z2+30X3Y3Z3+4X2Y6Z+10X2Y5Z2+8X2Y4Z3+18X2Y2Z5+38XY6Z2+10X5Y2Z+12X4Y2Z2+18X3Y4Z+558X2Y4Z2+54X2Y2Z4+10X2YZ5+182XY6Z+10XY3Z4+10XY2Z5+10X3Y3Z+26X2Y4Z+52X2Y3Z2+10X2Y2Z3+48XY4Z2+24XY3Z3+50X3Y2Z+4X2Y3Z+712X2Y2Z2+290XY4Z+38XY3Z2+56XY2Z3+50X3YZ+36X2Y2Z+10X2YZ2+238XY3Z+132XY2Z2+70XYZ3+20X2YZ+742XY2Z+90XYZ2+490XYZ6X8Y8Z82XY18Z26X8Y8Z424X6Y8Z612X6Y6Z82X4Y12Z42X2Y15Z212X10Y4Z418X6Y6Z62X4Y12Z26X4Y10Z46X4Y4Z108X3Y12Z36X2Y12Z46X10Y4Z26X6Y8Z220X4Y8Z46X4Y2Z102X3Y12Z4X3Y9Z44X2Y12Z26X2Y6Z86X2Y4Z106X3Y9Z32X2Y12Z8XY12Z214X4Y8Z230X4Y6Z46X4Y4Z632X3Y8Z38X2Y10Z26X2Y6Z62XY12Z2XY9Z44X5Y6Z216X3Y6Z410X2Y9Z22X2Y6Z52XY9Z36X6Y4Z22X5Y6Z256X4Y4Z48X3Y8Z24X3Y6Z322X2Y8Z212X2Y6Z44XY9Z22XY6Z516X5Y4Z28X2Y8Z2X2Y6Z38X2Y4Z528XY9Z8XY6Z430X6Y2Z28X5Y4Z22X4Y4Z26X4Y2Z42X3Y6Z40X3Y4Z320X3Y3Z4206X2Y6Z236X2Y4Z42X2Y3Z542X2Y2Z68XY8Z8XY6Z38XY4Z520X5Y2Z230X3Y3Z34X2Y6Z10X2Y5Z28X2Y4Z318X2Y2Z538XY6Z210X5Y2Z12X4Y2Z218X3Y4Z558X2Y4Z254X2Y2Z410X2YZ5182XY6Z10XY3Z410XY2Z510X3Y3Z26X2Y4Z52X2Y3Z210X2Y2Z348XY4Z224XY3Z350X3Y2Z4X2Y3Z712X2Y2Z2290XY4Z38XY3Z256XY2Z350X3YZ36X2Y2Z10X2YZ2238XY3Z132XY2Z270XYZ320X2YZ742XY2Z90XYZ2490XYZ6*X^8*Y^8*Z^8+2*X*Y^18*Z^2+6*X^8*Y^8*Z^4+24*X^6*Y^8*Z^6+12*X^6*Y^6*Z^8+2*X^4*Y^12*Z^4+2*X^2*Y^15*Z^2+12*X^10*Y^4*Z^4+18*X^6*Y^6*Z^6+2*X^4*Y^12*Z^2+6*X^4*Y^10*Z^4+6*X^4*Y^4*Z^10+8*X^3*Y^12*Z^3+6*X^2*Y^12*Z^4+6*X^10*Y^4*Z^2+6*X^6*Y^8*Z^2+20*X^4*Y^8*Z^4+6*X^4*Y^2*Z^10+2*X^3*Y^12*Z+4*X^3*Y^9*Z^4+4*X^2*Y^12*Z^2+6*X^2*Y^6*Z^8+6*X^2*Y^4*Z^10+6*X^3*Y^9*Z^3+2*X^2*Y^12*Z+8*X*Y^12*Z^2+14*X^4*Y^8*Z^2+30*X^4*Y^6*Z^4+6*X^4*Y^4*Z^6+32*X^3*Y^8*Z^3+8*X^2*Y^10*Z^2+6*X^2*Y^6*Z^6+2*X*Y^12*Z+2*X*Y^9*Z^4+4*X^5*Y^6*Z^2+16*X^3*Y^6*Z^4+10*X^2*Y^9*Z^2+2*X^2*Y^6*Z^5+2*X*Y^9*Z^3+6*X^6*Y^4*Z^2+2*X^5*Y^6*Z+256*X^4*Y^4*Z^4+8*X^3*Y^8*Z+24*X^3*Y^6*Z^3+22*X^2*Y^8*Z^2+12*X^2*Y^6*Z^4+4*X*Y^9*Z^2+2*X*Y^6*Z^5+16*X^5*Y^4*Z^2+8*X^2*Y^8*Z+2*X^2*Y^6*Z^3+8*X^2*Y^4*Z^5+28*X*Y^9*Z+8*X*Y^6*Z^4+30*X^6*Y^2*Z^2+8*X^5*Y^4*Z+22*X^4*Y^4*Z^2+6*X^4*Y^2*Z^4+2*X^3*Y^6*Z+40*X^3*Y^4*Z^3+20*X^3*Y^3*Z^4+206*X^2*Y^6*Z^2+36*X^2*Y^4*Z^4+2*X^2*Y^3*Z^5+42*X^2*Y^2*Z^6+8*X*Y^8*Z+8*X*Y^6*Z^3+8*X*Y^4*Z^5+20*X^5*Y^2*Z^2+30*X^3*Y^3*Z^3+4*X^2*Y^6*Z+10*X^2*Y^5*Z^2+8*X^2*Y^4*Z^3+18*X^2*Y^2*Z^5+38*X*Y^6*Z^2+10*X^5*Y^2*Z+12*X^4*Y^2*Z^2+18*X^3*Y^4*Z+558*X^2*Y^4*Z^2+54*X^2*Y^2*Z^4+10*X^2*Y*Z^5+182*X*Y^6*Z+10*X*Y^3*Z^4+10*X*Y^2*Z^5+10*X^3*Y^3*Z+26*X^2*Y^4*Z+52*X^2*Y^3*Z^2+10*X^2*Y^2*Z^3+48*X*Y^4*Z^2+24*X*Y^3*Z^3+50*X^3*Y^2*Z+4*X^2*Y^3*Z+712*X^2*Y^2*Z^2+290*X*Y^4*Z+38*X*Y^3*Z^2+56*X*Y^2*Z^3+50*X^3*Y*Z+36*X^2*Y^2*Z+10*X^2*Y*Z^2+238*X*Y^3*Z+132*X*Y^2*Z^2+70*X*Y*Z^3+20*X^2*Y*Z+742*X*Y^2*Z+90*X*Y*Z^2+490*X*Y*Z

Algorithm definition

The algorithm ⟨10×28×32:5356⟩ is the (Kronecker) tensor product of ⟨2×4×4:26⟩ with ⟨5×7×8:206⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table