Description of fast matrix multiplication algorithm: ⟨10×26×26:4130⟩

Algorithm type

16X10Y10Z8+24X10Y10Z4+4X8Y8Z8+4X6Y12Z6+2X6Y10Z6+X4Y14Z4+2X8Y4Z8+8X6Y8Z6+2X6Y6Z8+3X4Y12Z4+X2Y16Z2+X6Y6Z6+3X4Y10Z4+2X2Y12Z4+16X6Y6Z4+3X6Y4Z6+X6Y2Z8+10X4Y8Z4+48X4Y6Z6+3X2Y12Z2+X2Y10Z4+24X6Y6Z2+96X5Y5Z4+X4Y8Z2+X4Y6Z4+X2Y10Z2+3X2Y8Z4+72X2Y6Z6+144X5Y5Z2+121X4Y4Z4+24X3Y6Z3+8X2Y8Z2+X2Y6Z4+12X3Y5Z3+6X2Y7Z2+3X4Y4Z2+12X4Y2Z4+48X3Y4Z3+12X3Y3Z4+43X2Y6Z2+6XY8Z+6X3Y3Z3+18X2Y5Z2+12XY6Z2+18X4Y2Z2+96X3Y3Z2+18X3Y2Z3+6X3YZ4+128X2Y4Z2+288X2Y3Z3+23X2Y2Z4+18XY6Z+6XY5Z2+144X3Y3Z+6X2Y4Z+6X2Y3Z2+6XY5Z+18XY4Z2+432XY3Z3+672X2Y2Z2+48XY4Z+6XY3Z2+18X2Y2Z+150XY3Z+108X2YZ+408XY2Z+138XYZ2+540XYZ16X10Y10Z824X10Y10Z44X8Y8Z84X6Y12Z62X6Y10Z6X4Y14Z42X8Y4Z88X6Y8Z62X6Y6Z83X4Y12Z4X2Y16Z2X6Y6Z63X4Y10Z42X2Y12Z416X6Y6Z43X6Y4Z6X6Y2Z810X4Y8Z448X4Y6Z63X2Y12Z2X2Y10Z424X6Y6Z296X5Y5Z4X4Y8Z2X4Y6Z4X2Y10Z23X2Y8Z472X2Y6Z6144X5Y5Z2121X4Y4Z424X3Y6Z38X2Y8Z2X2Y6Z412X3Y5Z36X2Y7Z23X4Y4Z212X4Y2Z448X3Y4Z312X3Y3Z443X2Y6Z26XY8Z6X3Y3Z318X2Y5Z212XY6Z218X4Y2Z296X3Y3Z218X3Y2Z36X3YZ4128X2Y4Z2288X2Y3Z323X2Y2Z418XY6Z6XY5Z2144X3Y3Z6X2Y4Z6X2Y3Z26XY5Z18XY4Z2432XY3Z3672X2Y2Z248XY4Z6XY3Z218X2Y2Z150XY3Z108X2YZ408XY2Z138XYZ2540XYZ16*X^10*Y^10*Z^8+24*X^10*Y^10*Z^4+4*X^8*Y^8*Z^8+4*X^6*Y^12*Z^6+2*X^6*Y^10*Z^6+X^4*Y^14*Z^4+2*X^8*Y^4*Z^8+8*X^6*Y^8*Z^6+2*X^6*Y^6*Z^8+3*X^4*Y^12*Z^4+X^2*Y^16*Z^2+X^6*Y^6*Z^6+3*X^4*Y^10*Z^4+2*X^2*Y^12*Z^4+16*X^6*Y^6*Z^4+3*X^6*Y^4*Z^6+X^6*Y^2*Z^8+10*X^4*Y^8*Z^4+48*X^4*Y^6*Z^6+3*X^2*Y^12*Z^2+X^2*Y^10*Z^4+24*X^6*Y^6*Z^2+96*X^5*Y^5*Z^4+X^4*Y^8*Z^2+X^4*Y^6*Z^4+X^2*Y^10*Z^2+3*X^2*Y^8*Z^4+72*X^2*Y^6*Z^6+144*X^5*Y^5*Z^2+121*X^4*Y^4*Z^4+24*X^3*Y^6*Z^3+8*X^2*Y^8*Z^2+X^2*Y^6*Z^4+12*X^3*Y^5*Z^3+6*X^2*Y^7*Z^2+3*X^4*Y^4*Z^2+12*X^4*Y^2*Z^4+48*X^3*Y^4*Z^3+12*X^3*Y^3*Z^4+43*X^2*Y^6*Z^2+6*X*Y^8*Z+6*X^3*Y^3*Z^3+18*X^2*Y^5*Z^2+12*X*Y^6*Z^2+18*X^4*Y^2*Z^2+96*X^3*Y^3*Z^2+18*X^3*Y^2*Z^3+6*X^3*Y*Z^4+128*X^2*Y^4*Z^2+288*X^2*Y^3*Z^3+23*X^2*Y^2*Z^4+18*X*Y^6*Z+6*X*Y^5*Z^2+144*X^3*Y^3*Z+6*X^2*Y^4*Z+6*X^2*Y^3*Z^2+6*X*Y^5*Z+18*X*Y^4*Z^2+432*X*Y^3*Z^3+672*X^2*Y^2*Z^2+48*X*Y^4*Z+6*X*Y^3*Z^2+18*X^2*Y^2*Z+150*X*Y^3*Z+108*X^2*Y*Z+408*X*Y^2*Z+138*X*Y*Z^2+540*X*Y*Z

Algorithm definition

The algorithm ⟨10×26×26:4130⟩ is the (Kronecker) tensor product of ⟨5×13×13:590⟩ with ⟨2×2×2:7⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table