Description of fast matrix multiplication algorithm: ⟨4×14×14:532⟩

Algorithm type

2X4Y12Z4+4X4Y10Z4+3X2Y14Z2+4X4Y8Z4+X2Y12Z2+3X4Y6Z4+17X2Y10Z2+9X4Y4Z4+6X2Y8Z2+X4Y2Z4+21X2Y6Z2+24X2Y5Z2+18XY7Z+29X2Y4Z2+6XY6Z+18X2Y3Z2+102XY5Z+66X2Y2Z2+36XY4Z+6X2YZ2+54XY3Z+30XY2Z+72XYZ2X4Y12Z44X4Y10Z43X2Y14Z24X4Y8Z4X2Y12Z23X4Y6Z417X2Y10Z29X4Y4Z46X2Y8Z2X4Y2Z421X2Y6Z224X2Y5Z218XY7Z29X2Y4Z26XY6Z18X2Y3Z2102XY5Z66X2Y2Z236XY4Z6X2YZ254XY3Z30XY2Z72XYZ2*X^4*Y^12*Z^4+4*X^4*Y^10*Z^4+3*X^2*Y^14*Z^2+4*X^4*Y^8*Z^4+X^2*Y^12*Z^2+3*X^4*Y^6*Z^4+17*X^2*Y^10*Z^2+9*X^4*Y^4*Z^4+6*X^2*Y^8*Z^2+X^4*Y^2*Z^4+21*X^2*Y^6*Z^2+24*X^2*Y^5*Z^2+18*X*Y^7*Z+29*X^2*Y^4*Z^2+6*X*Y^6*Z+18*X^2*Y^3*Z^2+102*X*Y^5*Z+66*X^2*Y^2*Z^2+36*X*Y^4*Z+6*X^2*Y*Z^2+54*X*Y^3*Z+30*X*Y^2*Z+72*X*Y*Z

Algorithm definition

The algorithm ⟨4×14×14:532⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨2×7×7:76⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table