Description of fast matrix multiplication algorithm: ⟨10×18×25:2726⟩

Algorithm type

2X2Y12Z4+34X4Y8Z4+10X2Y12Z2+4XY12Z2+2X6Y4Z4+4X2Y8Z4+4X2Y4Z8+20XY12Z+10X6Y4Z2+11X6Y2Z4+191X4Y4Z4+70X2Y8Z2+11X2Y6Z4+2X2Y4Z6+22X2Y2Z8+8XY9Z2+40XY9Z+8XY8Z2+55X6Y2Z2+2X4Y4Z2+22X4Y2Z4+191X2Y6Z2+48X2Y4Z4+11X2Y2Z6+4XY8Z+4X3Y4Z2+20XY6Z2+8XY4Z4+11X4Y2Z2+20X3Y4Z+8X3Y3Z2+101X2Y4Z2+143X2Y2Z4+28XY6Z+4XY4Z3+16XY3Z4+40X3Y3Z+4X3Y2Z2+4X2Y4Z+16X2Y3Z2+60XY4Z2+8XY3Z3+8XY2Z4+20X3Y2Z+18X3YZ2+8X2Y3Z+391X2Y2Z2+32XY4Z+122XY3Z2+4XY2Z3+36XYZ4+90X3YZ+4X2Y2Z+36X2YZ2+146XY3Z+88XY2Z2+18XYZ3+18X2YZ+46XY2Z+234XYZ2+126XYZ2X2Y12Z434X4Y8Z410X2Y12Z24XY12Z22X6Y4Z44X2Y8Z44X2Y4Z820XY12Z10X6Y4Z211X6Y2Z4191X4Y4Z470X2Y8Z211X2Y6Z42X2Y4Z622X2Y2Z88XY9Z240XY9Z8XY8Z255X6Y2Z22X4Y4Z222X4Y2Z4191X2Y6Z248X2Y4Z411X2Y2Z64XY8Z4X3Y4Z220XY6Z28XY4Z411X4Y2Z220X3Y4Z8X3Y3Z2101X2Y4Z2143X2Y2Z428XY6Z4XY4Z316XY3Z440X3Y3Z4X3Y2Z24X2Y4Z16X2Y3Z260XY4Z28XY3Z38XY2Z420X3Y2Z18X3YZ28X2Y3Z391X2Y2Z232XY4Z122XY3Z24XY2Z336XYZ490X3YZ4X2Y2Z36X2YZ2146XY3Z88XY2Z218XYZ318X2YZ46XY2Z234XYZ2126XYZ2*X^2*Y^12*Z^4+34*X^4*Y^8*Z^4+10*X^2*Y^12*Z^2+4*X*Y^12*Z^2+2*X^6*Y^4*Z^4+4*X^2*Y^8*Z^4+4*X^2*Y^4*Z^8+20*X*Y^12*Z+10*X^6*Y^4*Z^2+11*X^6*Y^2*Z^4+191*X^4*Y^4*Z^4+70*X^2*Y^8*Z^2+11*X^2*Y^6*Z^4+2*X^2*Y^4*Z^6+22*X^2*Y^2*Z^8+8*X*Y^9*Z^2+40*X*Y^9*Z+8*X*Y^8*Z^2+55*X^6*Y^2*Z^2+2*X^4*Y^4*Z^2+22*X^4*Y^2*Z^4+191*X^2*Y^6*Z^2+48*X^2*Y^4*Z^4+11*X^2*Y^2*Z^6+4*X*Y^8*Z+4*X^3*Y^4*Z^2+20*X*Y^6*Z^2+8*X*Y^4*Z^4+11*X^4*Y^2*Z^2+20*X^3*Y^4*Z+8*X^3*Y^3*Z^2+101*X^2*Y^4*Z^2+143*X^2*Y^2*Z^4+28*X*Y^6*Z+4*X*Y^4*Z^3+16*X*Y^3*Z^4+40*X^3*Y^3*Z+4*X^3*Y^2*Z^2+4*X^2*Y^4*Z+16*X^2*Y^3*Z^2+60*X*Y^4*Z^2+8*X*Y^3*Z^3+8*X*Y^2*Z^4+20*X^3*Y^2*Z+18*X^3*Y*Z^2+8*X^2*Y^3*Z+391*X^2*Y^2*Z^2+32*X*Y^4*Z+122*X*Y^3*Z^2+4*X*Y^2*Z^3+36*X*Y*Z^4+90*X^3*Y*Z+4*X^2*Y^2*Z+36*X^2*Y*Z^2+146*X*Y^3*Z+88*X*Y^2*Z^2+18*X*Y*Z^3+18*X^2*Y*Z+46*X*Y^2*Z+234*X*Y*Z^2+126*X*Y*Z

Algorithm definition

The algorithm ⟨10×18×25:2726⟩ is the (Kronecker) tensor product of ⟨2×6×5:47⟩ with ⟨5×3×5:58⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table