Description of fast matrix multiplication algorithm: ⟨10×18×21:2250⟩

Algorithm type

3X6Y4Z4+177X4Y4Z4+6X6Y2Z2+6X4Y4Z2+3X4Y2Z4+6X3Y4Z2+48X4Y2Z2+435X2Y4Z2+60X2Y2Z4+6X3Y2Z2+12X2Y4Z+12X3Y2Z+426X2Y2Z2+162XY4Z+12X3YZ+108X2Y2Z+6X2YZ2+120XY2Z2+96X2YZ+294XY2Z+120XYZ2+132XYZ3X6Y4Z4177X4Y4Z46X6Y2Z26X4Y4Z23X4Y2Z46X3Y4Z248X4Y2Z2435X2Y4Z260X2Y2Z46X3Y2Z212X2Y4Z12X3Y2Z426X2Y2Z2162XY4Z12X3YZ108X2Y2Z6X2YZ2120XY2Z296X2YZ294XY2Z120XYZ2132XYZ3*X^6*Y^4*Z^4+177*X^4*Y^4*Z^4+6*X^6*Y^2*Z^2+6*X^4*Y^4*Z^2+3*X^4*Y^2*Z^4+6*X^3*Y^4*Z^2+48*X^4*Y^2*Z^2+435*X^2*Y^4*Z^2+60*X^2*Y^2*Z^4+6*X^3*Y^2*Z^2+12*X^2*Y^4*Z+12*X^3*Y^2*Z+426*X^2*Y^2*Z^2+162*X*Y^4*Z+12*X^3*Y*Z+108*X^2*Y^2*Z+6*X^2*Y*Z^2+120*X*Y^2*Z^2+96*X^2*Y*Z+294*X*Y^2*Z+120*X*Y*Z^2+132*X*Y*Z

Algorithm definition

The algorithm ⟨10×18×21:2250⟩ is the (Kronecker) tensor product of ⟨2×3×3:15⟩ with ⟨5×6×7:150⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table