Description of fast matrix multiplication algorithm: ⟨10×14×22:1939⟩

Algorithm type

2X4Y4Z6+106X4Y4Z4+X6Y2Z2+2X4Y2Z4+2X2Y4Z4+5X2Y2Z6+39X4Y2Z2+47X2Y4Z2+25X2Y2Z4+12X2Y2Z3+684X2Y2Z2+6X3YZ+12X2YZ2+12XY2Z2+30XYZ3+234X2YZ+282XY2Z+150XYZ2+288XYZ2X4Y4Z6106X4Y4Z4X6Y2Z22X4Y2Z42X2Y4Z45X2Y2Z639X4Y2Z247X2Y4Z225X2Y2Z412X2Y2Z3684X2Y2Z26X3YZ12X2YZ212XY2Z230XYZ3234X2YZ282XY2Z150XYZ2288XYZ2*X^4*Y^4*Z^6+106*X^4*Y^4*Z^4+X^6*Y^2*Z^2+2*X^4*Y^2*Z^4+2*X^2*Y^4*Z^4+5*X^2*Y^2*Z^6+39*X^4*Y^2*Z^2+47*X^2*Y^4*Z^2+25*X^2*Y^2*Z^4+12*X^2*Y^2*Z^3+684*X^2*Y^2*Z^2+6*X^3*Y*Z+12*X^2*Y*Z^2+12*X*Y^2*Z^2+30*X*Y*Z^3+234*X^2*Y*Z+282*X*Y^2*Z+150*X*Y*Z^2+288*X*Y*Z

Algorithm definition

The algorithm ⟨10×14×22:1939⟩ is the (Kronecker) tensor product of ⟨5×7×11:277⟩ with ⟨2×2×2:7⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table