Description of fast matrix multiplication algorithm: ⟨4×5×8:122⟩

Algorithm type

X4Y4Z4+X4Y3Z4+X3Y4Z4+X3Y3Z4+3X2Y5Z2+XY5Z2+27X2Y2Z2+2X2YZ2+12XY3Z+XY2Z2+72XYZX4Y4Z4X4Y3Z4X3Y4Z4X3Y3Z43X2Y5Z2XY5Z227X2Y2Z22X2YZ212XY3ZXY2Z272XYZX^4*Y^4*Z^4+X^4*Y^3*Z^4+X^3*Y^4*Z^4+X^3*Y^3*Z^4+3*X^2*Y^5*Z^2+X*Y^5*Z^2+27*X^2*Y^2*Z^2+2*X^2*Y*Z^2+12*X*Y^3*Z+X*Y^2*Z^2+72*X*Y*Z

Algorithm definition

The algorithm ⟨4×5×8:122⟩ could be constructed using the following decomposition:

⟨4×5×8:122⟩ = ⟨2×3×4:20⟩ + ⟨2×3×4:20⟩ + ⟨2×2×4:14⟩ + ⟨2×3×4:20⟩ + ⟨2×2×4:14⟩ + ⟨2×3×4:20⟩ + ⟨2×2×4:14⟩.

This decomposition is defined by the following equality:

TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_2_1A_2_2A_2_3A_2_4A_2_5A_3_1A_3_2A_3_3A_3_4A_3_5A_4_1A_4_2A_4_3A_4_4A_4_5B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_5_1B_5_2B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8C_1_1C_1_2C_1_3C_1_4C_2_1C_2_2C_2_3C_2_4C_3_1C_3_2C_3_3C_3_4C_4_1C_4_2C_4_3C_4_4C_5_1C_5_2C_5_3C_5_4C_6_1C_6_2C_6_3C_6_4C_7_1C_7_2C_7_3C_7_4C_8_1C_8_2C_8_3C_8_4=TraceMulA_3_1A_1_2+A_3_4A_1_3+A_3_5A_4_1A_2_2+A_4_4A_4_5+A_2_3B_1_3B_1_4B_1_7B_1_8B_2_1+B_4_3B_2_2+B_4_4B_4_7+B_2_5B_4_8+B_2_6B_5_3+B_3_1B_5_4+B_3_2B_5_7+B_3_5B_5_8+B_3_6C_1_1+C_3_3C_1_2+C_3_4C_2_1+C_4_3C_2_2+C_4_4C_5_1+C_7_3C_5_2+C_7_4C_6_1+C_8_3C_6_2+C_8_4+TraceMulA_1_1-A_3_1A_1_4-A_3_4A_1_5-A_3_5A_2_1-A_4_1A_2_4-A_4_4-A_4_5+A_2_5B_1_1+B_1_3B_1_2+B_1_4B_1_7+B_1_5B_1_8+B_1_6B_4_1+B_4_3B_4_2+B_4_4B_4_7+B_4_5B_4_8+B_4_6B_5_1+B_5_3B_5_4+B_5_2B_5_7+B_5_5B_5_8+B_5_6C_1_1C_1_2C_2_1C_2_2C_5_1C_5_2C_6_1C_6_2+TraceMul-A_1_2+A_3_2-A_1_3+A_3_3-A_2_2+A_4_2A_4_3-A_2_3B_2_1+B_2_3B_2_2+B_2_4B_2_7+B_2_5B_2_8+B_2_6B_3_1+B_3_3B_3_2+B_3_4B_3_7+B_3_5B_3_8+B_3_6C_3_3C_3_4C_4_3C_4_4C_7_3C_7_4C_8_3C_8_4+TraceMulA_1_1A_1_2+A_1_4A_1_5+A_1_3A_2_1A_2_2+A_2_4A_2_5+A_2_3B_1_3B_1_4B_1_7B_1_8B_4_3B_4_4B_4_7B_4_8B_5_3B_5_4B_5_7B_5_8-C_1_1+C_3_1C_3_2-C_1_2-C_2_1+C_4_1C_4_2-C_2_2C_7_1-C_5_1C_7_2-C_5_2C_8_1-C_6_1C_8_2-C_6_2+TraceMulA_1_2A_1_3A_2_2A_2_3B_2_3-B_4_3B_2_4-B_4_4B_2_7-B_4_7B_2_8-B_4_8-B_5_3+B_3_3-B_5_4+B_3_4-B_5_7+B_3_7-B_5_8+B_3_8C_3_1+C_3_3C_3_2+C_3_4C_4_1+C_4_3C_4_2+C_4_4C_7_1+C_7_3C_7_2+C_7_4C_8_1+C_8_3C_8_2+C_8_4+TraceMulA_3_1A_3_4A_3_5A_4_1A_4_4A_4_5B_1_1B_1_2B_1_5B_1_6-B_2_1+B_4_1-B_2_2+B_4_2-B_2_5+B_4_5-B_2_6+B_4_6B_5_1-B_3_1B_5_2-B_3_2B_5_5-B_3_5B_5_6-B_3_6C_1_1+C_1_3C_1_2+C_1_4C_2_1+C_2_3C_2_2+C_2_4C_5_1+C_5_3C_5_4+C_5_2C_6_1+C_6_3C_6_2+C_6_4+TraceMulA_3_2+A_3_4A_3_3+A_3_5A_4_2+A_4_4A_4_5+A_4_3B_2_1B_2_2B_2_5B_2_6B_3_1B_3_2B_3_5B_3_6C_1_3-C_3_3C_1_4-C_3_4C_2_3-C_4_3C_2_4-C_4_4C_5_3-C_7_3C_5_4-C_7_4C_6_3-C_8_3C_6_4-C_8_4TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_2_1A_2_2A_2_3A_2_4A_2_5A_3_1A_3_2A_3_3A_3_4A_3_5A_4_1A_4_2A_4_3A_4_4A_4_5B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_5_1B_5_2B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8C_1_1C_1_2C_1_3C_1_4C_2_1C_2_2C_2_3C_2_4C_3_1C_3_2C_3_3C_3_4C_4_1C_4_2C_4_3C_4_4C_5_1C_5_2C_5_3C_5_4C_6_1C_6_2C_6_3C_6_4C_7_1C_7_2C_7_3C_7_4C_8_1C_8_2C_8_3C_8_4TraceMulA_3_1A_1_2A_3_4A_1_3A_3_5A_4_1A_2_2A_4_4A_4_5A_2_3B_1_3B_1_4B_1_7B_1_8B_2_1B_4_3B_2_2B_4_4B_4_7B_2_5B_4_8B_2_6B_5_3B_3_1B_5_4B_3_2B_5_7B_3_5B_5_8B_3_6C_1_1C_3_3C_1_2C_3_4C_2_1C_4_3C_2_2C_4_4C_5_1C_7_3C_5_2C_7_4C_6_1C_8_3C_6_2C_8_4TraceMulA_1_1A_3_1A_1_4A_3_4A_1_5A_3_5A_2_1A_4_1A_2_4A_4_4A_4_5A_2_5B_1_1B_1_3B_1_2B_1_4B_1_7B_1_5B_1_8B_1_6B_4_1B_4_3B_4_2B_4_4B_4_7B_4_5B_4_8B_4_6B_5_1B_5_3B_5_4B_5_2B_5_7B_5_5B_5_8B_5_6C_1_1C_1_2C_2_1C_2_2C_5_1C_5_2C_6_1C_6_2TraceMulA_1_2A_3_2A_1_3A_3_3A_2_2A_4_2A_4_3A_2_3B_2_1B_2_3B_2_2B_2_4B_2_7B_2_5B_2_8B_2_6B_3_1B_3_3B_3_2B_3_4B_3_7B_3_5B_3_8B_3_6C_3_3C_3_4C_4_3C_4_4C_7_3C_7_4C_8_3C_8_4TraceMulA_1_1A_1_2A_1_4A_1_5A_1_3A_2_1A_2_2A_2_4A_2_5A_2_3B_1_3B_1_4B_1_7B_1_8B_4_3B_4_4B_4_7B_4_8B_5_3B_5_4B_5_7B_5_8C_1_1C_3_1C_3_2C_1_2C_2_1C_4_1C_4_2C_2_2C_7_1C_5_1C_7_2C_5_2C_8_1C_6_1C_8_2C_6_2TraceMulA_1_2A_1_3A_2_2A_2_3B_2_3B_4_3B_2_4B_4_4B_2_7B_4_7B_2_8B_4_8B_5_3B_3_3B_5_4B_3_4B_5_7B_3_7B_5_8B_3_8C_3_1C_3_3C_3_2C_3_4C_4_1C_4_3C_4_2C_4_4C_7_1C_7_3C_7_2C_7_4C_8_1C_8_3C_8_2C_8_4TraceMulA_3_1A_3_4A_3_5A_4_1A_4_4A_4_5B_1_1B_1_2B_1_5B_1_6B_2_1B_4_1B_2_2B_4_2B_2_5B_4_5B_2_6B_4_6B_5_1B_3_1B_5_2B_3_2B_5_5B_3_5B_5_6B_3_6C_1_1C_1_3C_1_2C_1_4C_2_1C_2_3C_2_2C_2_4C_5_1C_5_3C_5_4C_5_2C_6_1C_6_3C_6_2C_6_4TraceMulA_3_2A_3_4A_3_3A_3_5A_4_2A_4_4A_4_5A_4_3B_2_1B_2_2B_2_5B_2_6B_3_1B_3_2B_3_5B_3_6C_1_3C_3_3C_1_4C_3_4C_2_3C_4_3C_2_4C_4_4C_5_3C_7_3C_5_4C_7_4C_6_3C_8_3C_6_4C_8_4Trace(Mul(Matrix(4, 5, [[A_1_1,A_1_2,A_1_3,A_1_4,A_1_5],[A_2_1,A_2_2,A_2_3,A_2_4,A_2_5],[A_3_1,A_3_2,A_3_3,A_3_4,A_3_5],[A_4_1,A_4_2,A_4_3,A_4_4,A_4_5]]),Matrix(5, 8, [[B_1_1,B_1_2,B_1_3,B_1_4,B_1_5,B_1_6,B_1_7,B_1_8],[B_2_1,B_2_2,B_2_3,B_2_4,B_2_5,B_2_6,B_2_7,B_2_8],[B_3_1,B_3_2,B_3_3,B_3_4,B_3_5,B_3_6,B_3_7,B_3_8],[B_4_1,B_4_2,B_4_3,B_4_4,B_4_5,B_4_6,B_4_7,B_4_8],[B_5_1,B_5_2,B_5_3,B_5_4,B_5_5,B_5_6,B_5_7,B_5_8]]),Matrix(8, 4, [[C_1_1,C_1_2,C_1_3,C_1_4],[C_2_1,C_2_2,C_2_3,C_2_4],[C_3_1,C_3_2,C_3_3,C_3_4],[C_4_1,C_4_2,C_4_3,C_4_4],[C_5_1,C_5_2,C_5_3,C_5_4],[C_6_1,C_6_2,C_6_3,C_6_4],[C_7_1,C_7_2,C_7_3,C_7_4],[C_8_1,C_8_2,C_8_3,C_8_4]]))) = Trace(Mul(Matrix(2, 3, [[A_3_1,A_1_2+A_3_4,A_1_3+A_3_5],[A_4_1,A_2_2+A_4_4,A_4_5+A_2_3]]),Matrix(3, 4, [[B_1_3,B_1_4,B_1_7,B_1_8],[B_2_1+B_4_3,B_2_2+B_4_4,B_4_7+B_2_5,B_4_8+B_2_6],[B_5_3+B_3_1,B_5_4+B_3_2,B_5_7+B_3_5,B_5_8+B_3_6]]),Matrix(4, 2, [[C_1_1+C_3_3,C_1_2+C_3_4],[C_2_1+C_4_3,C_2_2+C_4_4],[C_5_1+C_7_3,C_5_2+C_7_4],[C_6_1+C_8_3,C_6_2+C_8_4]])))+Trace(Mul(Matrix(2, 3, [[A_1_1-A_3_1,A_1_4-A_3_4,A_1_5-A_3_5],[A_2_1-A_4_1,A_2_4-A_4_4,-A_4_5+A_2_5]]),Matrix(3, 4, [[B_1_1+B_1_3,B_1_2+B_1_4,B_1_7+B_1_5,B_1_8+B_1_6],[B_4_1+B_4_3,B_4_2+B_4_4,B_4_7+B_4_5,B_4_8+B_4_6],[B_5_1+B_5_3,B_5_4+B_5_2,B_5_7+B_5_5,B_5_8+B_5_6]]),Matrix(4, 2, [[C_1_1,C_1_2],[C_2_1,C_2_2],[C_5_1,C_5_2],[C_6_1,C_6_2]])))+Trace(Mul(Matrix(2, 2, [[-A_1_2+A_3_2,-A_1_3+A_3_3],[-A_2_2+A_4_2,A_4_3-A_2_3]]),Matrix(2, 4, [[B_2_1+B_2_3,B_2_2+B_2_4,B_2_7+B_2_5,B_2_8+B_2_6],[B_3_1+B_3_3,B_3_2+B_3_4,B_3_7+B_3_5,B_3_8+B_3_6]]),Matrix(4, 2, [[C_3_3,C_3_4],[C_4_3,C_4_4],[C_7_3,C_7_4],[C_8_3,C_8_4]])))+Trace(Mul(Matrix(2, 3, [[A_1_1,A_1_2+A_1_4,A_1_5+A_1_3],[A_2_1,A_2_2+A_2_4,A_2_5+A_2_3]]),Matrix(3, 4, [[B_1_3,B_1_4,B_1_7,B_1_8],[B_4_3,B_4_4,B_4_7,B_4_8],[B_5_3,B_5_4,B_5_7,B_5_8]]),Matrix(4, 2, [[-C_1_1+C_3_1,C_3_2-C_1_2],[-C_2_1+C_4_1,C_4_2-C_2_2],[C_7_1-C_5_1,C_7_2-C_5_2],[C_8_1-C_6_1,C_8_2-C_6_2]])))+Trace(Mul(Matrix(2, 2, [[A_1_2,A_1_3],[A_2_2,A_2_3]]),Matrix(2, 4, [[B_2_3-B_4_3,B_2_4-B_4_4,B_2_7-B_4_7,B_2_8-B_4_8],[-B_5_3+B_3_3,-B_5_4+B_3_4,-B_5_7+B_3_7,-B_5_8+B_3_8]]),Matrix(4, 2, [[C_3_1+C_3_3,C_3_2+C_3_4],[C_4_1+C_4_3,C_4_2+C_4_4],[C_7_1+C_7_3,C_7_2+C_7_4],[C_8_1+C_8_3,C_8_2+C_8_4]])))+Trace(Mul(Matrix(2, 3, [[A_3_1,A_3_4,A_3_5],[A_4_1,A_4_4,A_4_5]]),Matrix(3, 4, [[B_1_1,B_1_2,B_1_5,B_1_6],[-B_2_1+B_4_1,-B_2_2+B_4_2,-B_2_5+B_4_5,-B_2_6+B_4_6],[B_5_1-B_3_1,B_5_2-B_3_2,B_5_5-B_3_5,B_5_6-B_3_6]]),Matrix(4, 2, [[C_1_1+C_1_3,C_1_2+C_1_4],[C_2_1+C_2_3,C_2_2+C_2_4],[C_5_1+C_5_3,C_5_4+C_5_2],[C_6_1+C_6_3,C_6_2+C_6_4]])))+Trace(Mul(Matrix(2, 2, [[A_3_2+A_3_4,A_3_3+A_3_5],[A_4_2+A_4_4,A_4_5+A_4_3]]),Matrix(2, 4, [[B_2_1,B_2_2,B_2_5,B_2_6],[B_3_1,B_3_2,B_3_5,B_3_6]]),Matrix(4, 2, [[C_1_3-C_3_3,C_1_4-C_3_4],[C_2_3-C_4_3,C_2_4-C_4_4],[C_5_3-C_7_3,C_5_4-C_7_4],[C_6_3-C_8_3,C_6_4-C_8_4]])))

N.B.: for any matrices A, B and C such that the expression Tr(Mul(A,B,C)) is defined, one can construct several trilinear homogeneous polynomials P(A,B,C) such that P(A,B,C)=Tr(Mul(A,B,C)) (P(A,B,C) variables are A,B and C's coefficients). Each trilinear P expression encodes a matrix multiplication algorithm: the coefficient in C_i_j of P(A,B,C) is the (i,j)-th entry of the matrix product Mul(A,B)=Transpose(C).

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table