Description of fast matrix multiplication algorithm: ⟨9×9×24:1160⟩

Algorithm type

112X4Y6Z6+32X2Y9Z3+200X2Y6Z6+32X2Y3Z9+48XY9Z3+48XY6Z6+48XY3Z9+16X6Y3Z3+64X2Y6Z3+64X2Y3Z6+96XY6Z3+96XY3Z6+24X3Y3Z3+112X2Y3Z3+168XY3Z3112X4Y6Z632X2Y9Z3200X2Y6Z632X2Y3Z948XY9Z348XY6Z648XY3Z916X6Y3Z364X2Y6Z364X2Y3Z696XY6Z396XY3Z624X3Y3Z3112X2Y3Z3168XY3Z3112*X^4*Y^6*Z^6+32*X^2*Y^9*Z^3+200*X^2*Y^6*Z^6+32*X^2*Y^3*Z^9+48*X*Y^9*Z^3+48*X*Y^6*Z^6+48*X*Y^3*Z^9+16*X^6*Y^3*Z^3+64*X^2*Y^6*Z^3+64*X^2*Y^3*Z^6+96*X*Y^6*Z^3+96*X*Y^3*Z^6+24*X^3*Y^3*Z^3+112*X^2*Y^3*Z^3+168*X*Y^3*Z^3

Algorithm definition

The algorithm ⟨9×9×24:1160⟩ is the (Kronecker) tensor product of ⟨3×3×4:29⟩ with ⟨3×3×6:40⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table