Description of fast matrix multiplication algorithm: ⟨9×9×17:892⟩

Algorithm type

64X4Y6Z6+32X2Y9Z3+96X2Y6Z6+32X2Y3Z9+48XY9Z3+48XY3Z9+16X6Y3Z3+9X6Y2Z2+24X3Y3Z3+112X2Y3Z3+2X3YZ3+168XY3Z3+6X3Y2Z+6X3YZ2+54X2Y2Z2+13X3YZ+12XYZ3+36XY2Z+36XYZ2+78XYZ64X4Y6Z632X2Y9Z396X2Y6Z632X2Y3Z948XY9Z348XY3Z916X6Y3Z39X6Y2Z224X3Y3Z3112X2Y3Z32X3YZ3168XY3Z36X3Y2Z6X3YZ254X2Y2Z213X3YZ12XYZ336XY2Z36XYZ278XYZ64*X^4*Y^6*Z^6+32*X^2*Y^9*Z^3+96*X^2*Y^6*Z^6+32*X^2*Y^3*Z^9+48*X*Y^9*Z^3+48*X*Y^3*Z^9+16*X^6*Y^3*Z^3+9*X^6*Y^2*Z^2+24*X^3*Y^3*Z^3+112*X^2*Y^3*Z^3+2*X^3*Y*Z^3+168*X*Y^3*Z^3+6*X^3*Y^2*Z+6*X^3*Y*Z^2+54*X^2*Y^2*Z^2+13*X^3*Y*Z+12*X*Y*Z^3+36*X*Y^2*Z+36*X*Y*Z^2+78*X*Y*Z

Algorithm definition

The algorithm ⟨9×9×17:892⟩ could be constructed using the following decomposition:

⟨9×9×17:892⟩ = ⟨3×3×6:40⟩ + ⟨3×3×6:40⟩ + ⟨3×3×6:40⟩ + ⟨3×3×6:40⟩ + ⟨3×3×6:40⟩ + ⟨3×3×6:40⟩ + ⟨3×3×6:40⟩ + ⟨3×3×6:40⟩ + ⟨3×3×6:40⟩ + ⟨3×3×6:40⟩ + ⟨3×3×6:40⟩ + ⟨3×3×6:40⟩ + ⟨3×3×5:36⟩ + ⟨3×3×5:36⟩ + ⟨3×3×5:36⟩ + ⟨3×3×6:40⟩ + ⟨3×3×6:40⟩ + ⟨3×3×5:36⟩ + ⟨3×3×5:36⟩ + ⟨3×3×5:36⟩ + ⟨3×3×6:40⟩ + ⟨3×3×5:36⟩ + ⟨3×3×6:40⟩.

This decomposition is defined by the following equality:

TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_1_8A_1_9A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_2_8A_2_9A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_3_8A_3_9A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_4_8A_4_9A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7A_5_8A_5_9A_6_1A_6_2A_6_3A_6_4A_6_5A_6_6A_6_7A_6_8A_6_9A_7_1A_7_2A_7_3A_7_4A_7_5A_7_6A_7_7A_7_8A_7_9A_8_1A_8_2A_8_3A_8_4A_8_5A_8_6A_8_7A_8_8A_8_9A_9_1A_9_2A_9_3A_9_4A_9_5A_9_6A_9_7A_9_8A_9_9B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_1_12B_1_13B_1_14B_1_15B_1_16B_1_17B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_2_12B_2_13B_2_14B_2_15B_2_16B_2_17B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_3_12B_3_13B_3_14B_3_15B_3_16B_3_17B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_4_12B_4_13B_4_14B_4_15B_4_16B_4_17B_5_1B_5_2B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_5_12B_5_13B_5_14B_5_15B_5_16B_5_17B_6_1B_6_2B_6_3B_6_4B_6_5B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11B_6_12B_6_13B_6_14B_6_15B_6_16B_6_17B_7_1B_7_2B_7_3B_7_4B_7_5B_7_6B_7_7B_7_8B_7_9B_7_10B_7_11B_7_12B_7_13B_7_14B_7_15B_7_16B_7_17B_8_1B_8_2B_8_3B_8_4B_8_5B_8_6B_8_7B_8_8B_8_9B_8_10B_8_11B_8_12B_8_13B_8_14B_8_15B_8_16B_8_17B_9_1B_9_2B_9_3B_9_4B_9_5B_9_6B_9_7B_9_8B_9_9B_9_10B_9_11B_9_12B_9_13B_9_14B_9_15B_9_16B_9_17C_1_1C_1_2C_1_3C_1_4C_1_5C_1_6C_1_7C_1_8C_1_9C_2_1C_2_2C_2_3C_2_4C_2_5C_2_6C_2_7C_2_8C_2_9C_3_1C_3_2C_3_3C_3_4C_3_5C_3_6C_3_7C_3_8C_3_9C_4_1C_4_2C_4_3C_4_4C_4_5C_4_6C_4_7C_4_8C_4_9C_5_1C_5_2C_5_3C_5_4C_5_5C_5_6C_5_7C_5_8C_5_9C_6_1C_6_2C_6_3C_6_4C_6_5C_6_6C_6_7C_6_8C_6_9C_7_1C_7_2C_7_3C_7_4C_7_5C_7_6C_7_7C_7_8C_7_9C_8_1C_8_2C_8_3C_8_4C_8_5C_8_6C_8_7C_8_8C_8_9C_9_1C_9_2C_9_3C_9_4C_9_5C_9_6C_9_7C_9_8C_9_9C_10_1C_10_2C_10_3C_10_4C_10_5C_10_6C_10_7C_10_8C_10_9C_11_1C_11_2C_11_3C_11_4C_11_5C_11_6C_11_7C_11_8C_11_9C_12_1C_12_2C_12_3C_12_4C_12_5C_12_6C_12_7C_12_8C_12_9C_13_1C_13_2C_13_3C_13_4C_13_5C_13_6C_13_7C_13_8C_13_9C_14_1C_14_2C_14_3C_14_4C_14_5C_14_6C_14_7C_14_8C_14_9C_15_1C_15_2C_15_3C_15_4C_15_5C_15_6C_15_7C_15_8C_15_9C_16_1C_16_2C_16_3C_16_4C_16_5C_16_6C_16_7C_16_8C_16_9C_17_1C_17_2C_17_3C_17_4C_17_5C_17_6C_17_7C_17_8C_17_9=TraceMul-A_4_7l+A_4_4-A_4_8l+A_4_5-A_4_9l+A_4_6-A_5_7l+A_5_4-A_5_8l+A_5_5-A_5_9l+A_5_6-A_6_7l+A_6_4-A_6_8l+A_6_5-A_6_9l+A_6_6-B_4_12l+B_4_6-B_4_13l+B_4_7-B_4_14l+B_4_8-B_4_15l+B_4_9-B_4_16l+B_4_10-B_4_17l+B_4_11-B_5_12l+B_5_6-B_5_13l+B_5_7-B_5_14l+B_5_8-B_5_15l+B_5_9-B_5_16l+B_5_10-B_5_17l+B_5_11-B_6_12l+B_6_6-B_6_13l+B_6_7-B_6_14l+B_6_8-B_6_15l+B_6_9-B_6_16l+B_6_10-B_6_17l+B_6_11-C_6_7l+C_6_4-C_6_8l+C_6_5-C_6_9l+C_6_6-C_7_7l+C_7_4-C_7_8l+C_7_5-C_7_9l+C_7_6-C_8_7l+C_8_4-C_8_8l+C_8_5-C_8_9l+C_8_6-C_9_7l+C_9_4-C_9_8l+C_9_5-C_9_9l+C_9_6-C_10_7l+C_10_4-C_10_8l+C_10_5-C_10_9l+C_10_6-C_11_7l+C_11_4-C_11_8l+C_11_5-C_11_9l+C_11_6+TraceMulA_4_4+A_7_4lA_4_5+A_7_5lA_4_6+A_7_6lA_5_4+A_8_4lA_5_5+A_8_5lA_5_6+A_8_6lA_6_4+A_9_4lA_6_5+A_9_5lA_6_6+A_9_6lB_4_6+B_7_6lB_4_7+B_7_7lB_4_8+B_7_8lB_4_9+B_7_9lB_4_10+B_7_10lB_4_11+B_7_11lB_5_6+B_8_6lB_5_7+B_8_7lB_5_8+B_8_8lB_5_9+B_8_9lB_5_10+B_8_10lB_5_11+B_8_11lB_6_6+B_9_6lB_6_7+B_9_7lB_6_8+B_9_8lB_6_9+B_9_9lB_6_10+B_9_10lB_6_11+B_9_11lC_6_4+C_12_4lC_6_5+C_12_5lC_6_6+C_12_6lC_7_4+C_13_4lC_7_5+C_13_5lC_7_6+C_13_6lC_8_4+C_14_4lC_8_5+C_14_5lC_8_6+C_14_6lC_9_4+C_15_4lC_9_5+C_15_5lC_9_6+C_15_6lC_10_4+C_16_4lC_10_5+C_16_5lC_10_6+C_16_6lC_11_4+C_17_4lC_11_5+C_17_5lC_11_6+C_17_6l+TraceMulA_7_7A_7_8A_7_9A_8_7A_8_8A_8_9A_9_7A_9_8A_9_9B_7_12B_7_13B_7_14B_7_15B_7_16B_7_17B_8_12B_8_13B_8_14B_8_15B_8_16B_8_17B_9_12B_9_13B_9_14B_9_15B_9_16B_9_17C_12_7C_12_8C_12_9C_13_7C_13_8C_13_9C_14_7C_14_8C_14_9C_15_7C_15_8C_15_9C_16_7C_16_8C_16_9C_17_7C_17_8C_17_9+TraceMul-A_4_7-A_4_8-A_4_9-A_5_7-A_5_8-A_5_9-A_6_7-A_6_8-A_6_9B_4_6+B_7_6l-lB_1_12-B_4_12l-B_7_12B_1_1+B_7_1l+B_4_7+B_7_7l-lB_1_13-B_4_13l-B_7_13B_1_2+B_7_2l+B_4_8+B_7_8l-lB_1_14-B_4_14l-B_7_14B_1_3+B_7_3l+B_4_9+B_7_9l-lB_1_15-B_4_15l-B_7_15B_1_4+B_7_4l+B_4_10+B_7_10l-lB_1_16-B_4_16l-B_7_16B_1_5+B_7_5l+B_4_11+B_7_11l-lB_1_17-B_4_17l-B_7_17B_5_6+B_8_6l-lB_2_12-B_5_12l-B_8_12B_2_1+B_8_1l+B_5_7+B_8_7l-lB_2_13-B_5_13l-B_8_13B_2_2+B_8_2l+B_5_8+B_8_8l-lB_2_14-B_5_14l-B_8_14B_2_3+B_8_3l+B_5_9+B_8_9l-lB_2_15-B_5_15l-B_8_15B_2_4+B_8_4l+B_5_10+B_8_10l-lB_2_16-B_5_16l-B_8_16B_2_5+B_8_5l+B_5_11+B_8_11l-lB_2_17-B_5_17l-B_8_17B_6_6+B_9_6l-lB_3_12-B_6_12l-B_9_12B_3_1+B_9_1l+B_6_7+B_9_7l-lB_3_13-B_6_13l-B_9_13B_3_2+B_9_2l+B_6_8+B_9_8l-lB_3_14-B_6_14l-B_9_14B_3_3+B_9_3l+B_6_9+B_9_9l-lB_3_15-B_6_15l-B_9_15B_3_4+B_9_4l+B_6_10+B_9_10l-lB_3_16-B_6_16l-B_9_16B_3_5+B_9_5l+B_6_11+B_9_11l-lB_3_17-B_6_17l-B_9_17C_12_4C_12_5C_12_6C_13_4C_13_5C_13_6C_14_4C_14_5C_14_6C_15_4C_15_5C_15_6C_16_4C_16_5C_16_6C_17_4C_17_5C_17_6+TraceMul-A_1_1-A_7_1l-A_4_4-A_7_4l+lA_1_7+A_4_7l+A_7_7-A_1_2-A_7_2l-A_4_5-A_7_5l+lA_1_8+A_4_8l+A_7_8-A_1_3-A_7_3l-A_4_6-A_7_6l+lA_1_9+A_4_9l+A_7_9-A_2_1-A_8_1l-A_5_4-A_8_4l+lA_2_7+A_5_7l+A_8_7-A_2_2-A_8_2l-A_5_5-A_8_5l+lA_2_8+A_5_8l+A_8_8-A_2_3-A_8_3l-A_5_6-A_8_6l+lA_2_9+A_5_9l+A_8_9-A_3_1-A_9_1l-A_6_4-A_9_4l+lA_3_7+A_6_7l+A_9_7-A_3_2-A_9_2l-A_6_5-A_9_5l+lA_3_8+A_6_8l+A_9_8-A_3_3-A_9_3l-A_6_6-A_9_6l+lA_3_9+A_6_9l+A_9_9B_7_6B_7_7B_7_8B_7_9B_7_10B_7_11B_8_6B_8_7B_8_8B_8_9B_8_10B_8_11B_9_6B_9_7B_9_8B_9_9B_9_10B_9_11C_6_7C_6_8C_6_9C_7_7C_7_8C_7_9C_8_7C_8_8C_8_9C_9_7C_9_8C_9_9C_10_7C_10_8C_10_9C_11_7C_11_8C_11_9+TraceMulA_7_4A_7_5A_7_6A_8_4A_8_5A_8_6A_9_4A_9_5A_9_6B_4_12B_4_13B_4_14B_4_15B_4_16B_4_17B_5_12B_5_13B_5_14B_5_15B_5_16B_5_17B_6_12B_6_13B_6_14B_6_15B_6_16B_6_17-C_12_1l-C_6_4-C_12_4l+C_6_7l+C_12_7-C_12_2l-C_6_5-C_12_5l+C_6_8l+C_12_8-C_12_3l-C_6_6-C_12_6l+C_6_9l+C_12_9-C_1_1-C_13_1l-C_7_4-C_13_4l+lC_1_7+C_7_7l+C_13_7-C_1_2-C_13_2l-C_7_5-C_13_5l+lC_1_8+C_7_8l+C_13_8-C_1_3-C_13_3l-C_7_6-C_13_6l+lC_1_9+C_7_9l+C_13_9-C_2_1-C_14_1l-C_8_4-C_14_4l+lC_2_7+C_8_7l+C_14_7-C_2_2-C_14_2l-C_8_5-C_14_5l+lC_2_8+C_8_8l+C_14_8-C_2_3-C_14_3l-C_8_6-C_14_6l+lC_2_9+C_8_9l+C_14_9-C_3_1-C_15_1l-C_9_4-C_15_4l+lC_3_7+C_9_7l+C_15_7-C_3_2-C_15_2l-C_9_5-C_15_5l+lC_3_8+C_9_8l+C_15_8-C_3_3-C_15_3l-C_9_6-C_15_6l+lC_3_9+C_9_9l+C_15_9-C_4_1-C_16_1l-C_10_4-C_16_4l+lC_4_7+C_10_7l+C_16_7-C_4_2-C_16_2l-C_10_5-C_16_5l+lC_4_8+C_10_8l+C_16_8-C_4_3-C_16_3l-C_10_6-C_16_6l+lC_4_9+C_10_9l+C_16_9-C_5_1-C_17_1l-C_11_4-C_17_4l+lC_5_7+C_11_7l+C_17_7-C_5_2-C_17_2l-C_11_5-C_17_5l+lC_5_8+C_11_8l+C_17_8-C_5_3-C_17_3l-C_11_6-C_17_6l+lC_5_9+C_11_9l+C_17_9+TraceMul-A_4_4-A_7_4l+A_4_7l-A_4_5-A_7_5l+A_4_8l-A_4_6-A_7_6l+A_4_9l-A_5_4-A_8_4l+A_5_7l-A_5_5-A_8_5l+A_5_8l-A_5_6-A_8_6l+A_5_9l-A_6_4-A_9_4l+A_6_7l-A_6_5-A_9_5l+A_6_8l-A_6_6-A_9_6l+A_6_9lB_4_6+B_7_6l-B_4_12lB_4_7+B_7_7l-B_4_13lB_4_8+B_7_8l-B_4_14lB_4_9+B_7_9l-B_4_15lB_4_10+B_7_10l-B_4_16lB_4_11+B_7_11l-B_4_17lB_5_6+B_8_6l-B_5_12lB_5_7+B_8_7l-B_5_13lB_5_8+B_8_8l-B_5_14lB_5_9+B_8_9l-B_5_15lB_5_10+B_8_10l-B_5_16lB_5_11+B_8_11l-B_5_17lB_6_6+B_9_6l-B_6_12lB_6_7+B_9_7l-B_6_13lB_6_8+B_9_8l-B_6_14lB_6_9+B_9_9l-B_6_15lB_6_10+B_9_10l-B_6_16lB_6_11+B_9_11l-B_6_17lC_6_4+C_12_4l-C_6_7lC_6_5+C_12_5l-C_6_8lC_6_6+C_12_6l-C_6_9lC_7_4+C_13_4l-C_7_7lC_7_5+C_13_5l-C_7_8lC_7_6+C_13_6l-C_7_9lC_8_4+C_14_4l-C_8_7lC_8_5+C_14_5l-C_8_8lC_8_6+C_14_6l-C_8_9lC_9_4+C_15_4l-C_9_7lC_9_5+C_15_5l-C_9_8lC_9_6+C_15_6l-C_9_9lC_10_4+C_16_4l-C_10_7lC_10_5+C_16_5l-C_10_8lC_10_6+C_16_6l-C_10_9lC_11_4+C_17_4l-C_11_7lC_11_5+C_17_5l-C_11_8lC_11_6+C_17_6l-C_11_9l+TraceMul-lA_1_7+A_1_1-lA_1_8+A_1_2-lA_1_9+A_1_3-lA_2_7+A_2_1-lA_2_8+A_2_2-lA_2_9+A_2_3-lA_3_7+A_3_1-lA_3_8+A_3_2-lA_3_9+A_3_3-lB_1_12+B_1_6-lB_1_13+B_1_7-lB_1_14+B_1_8-lB_1_15+B_1_9-lB_1_16+B_1_10-lB_1_17+B_1_11-lB_2_12+B_2_6-lB_2_13+B_2_7-lB_2_14+B_2_8-lB_2_15+B_2_9-lB_2_16+B_2_10-lB_2_17+B_2_11-lB_3_12+B_3_6-lB_3_13+B_3_7-lB_3_14+B_3_8-lB_3_15+B_3_9-lB_3_16+B_3_10-lB_3_17+B_3_11-C_6_7l+C_6_1-C_6_8l+C_6_2-C_6_9l+C_6_3-C_7_7l+C_7_1-C_7_8l+C_7_2-C_7_9l+C_7_3-C_8_7l+C_8_1-C_8_8l+C_8_2-C_8_9l+C_8_3-C_9_7l+C_9_1-C_9_8l+C_9_2-C_9_9l+C_9_3-C_10_7l+C_10_1-C_10_8l+C_10_2-C_10_9l+C_10_3-C_11_7l+C_11_1-C_11_8l+C_11_2-C_11_9l+C_11_3+TraceMulA_1_1+A_7_1lA_1_2+A_7_2lA_1_3+A_7_3lA_2_1+A_8_1lA_2_2+A_8_2lA_2_3+A_8_3lA_3_1+A_9_1lA_3_2+A_9_2lA_3_3+A_9_3lB_1_6+B_7_6lB_1_7+B_7_7lB_1_8+B_7_8lB_1_9+B_7_9lB_1_10+B_7_10lB_1_11+B_7_11lB_2_6+B_8_6lB_2_7+B_8_7lB_2_8+B_8_8lB_2_9+B_8_9lB_2_10+B_8_10lB_2_11+B_8_11lB_3_6+B_9_6lB_3_7+B_9_7lB_3_8+B_9_8lB_3_9+B_9_9lB_3_10+B_9_10lB_3_11+B_9_11lC_6_1+C_12_1lC_6_2+C_12_2lC_6_3+C_12_3lC_7_1+C_13_1lC_7_2+C_13_2lC_7_3+C_13_3lC_8_1+C_14_1lC_8_2+C_14_2lC_8_3+C_14_3lC_9_1+C_15_1lC_9_2+C_15_2lC_9_3+C_15_3lC_10_1+C_16_1lC_10_2+C_16_2lC_10_3+C_16_3lC_11_1+C_17_1lC_11_2+C_17_2lC_11_3+C_17_3l+TraceMulA_1_7A_1_8A_1_9A_2_7A_2_8A_2_9A_3_7A_3_8A_3_9-B_1_6-B_7_6l+lB_1_12+B_4_12l+B_7_12-B_4_1-B_7_1l-B_1_7-B_7_7l+lB_1_13+B_4_13l+B_7_13-B_4_2-B_7_2l-B_1_8-B_7_8l+lB_1_14+B_4_14l+B_7_14-B_4_3-B_7_3l-B_1_9-B_7_9l+lB_1_15+B_4_15l+B_7_15-B_4_4-B_7_4l-B_1_10-B_7_10l+lB_1_16+B_4_16l+B_7_16-B_4_5-B_7_5l-B_1_11-B_7_11l+lB_1_17+B_4_17l+B_7_17-B_2_6-B_8_6l+lB_2_12+B_5_12l+B_8_12-B_5_1-B_8_1l-B_2_7-B_8_7l+lB_2_13+B_5_13l+B_8_13-B_5_2-B_8_2l-B_2_8-B_8_8l+lB_2_14+B_5_14l+B_8_14-B_5_3-B_8_3l-B_2_9-B_8_9l+lB_2_15+B_5_15l+B_8_15-B_5_4-B_8_4l-B_2_10-B_8_10l+lB_2_16+B_5_16l+B_8_16-B_5_5-B_8_5l-B_2_11-B_8_11l+lB_2_17+B_5_17l+B_8_17-B_3_6-B_9_6l+lB_3_12+B_6_12l+B_9_12-B_6_1-B_9_1l-B_3_7-B_9_7l+lB_3_13+B_6_13l+B_9_13-B_6_2-B_9_2l-B_3_8-B_9_8l+lB_3_14+B_6_14l+B_9_14-B_6_3-B_9_3l-B_3_9-B_9_9l+lB_3_15+B_6_15l+B_9_15-B_6_4-B_9_4l-B_3_10-B_9_10l+lB_3_16+B_6_16l+B_9_16-B_6_5-B_9_5l-B_3_11-B_9_11l+lB_3_17+B_6_17l+B_9_17C_12_1C_12_2C_12_3C_13_1C_13_2C_13_3C_14_1C_14_2C_14_3C_15_1C_15_2C_15_3C_16_1C_16_2C_16_3C_17_1C_17_2C_17_3+TraceMul-A_7_1-A_7_2-A_7_3-A_8_1-A_8_2-A_8_3-A_9_1-A_9_2-A_9_3B_1_12B_1_13B_1_14B_1_15B_1_16B_1_17B_2_12B_2_13B_2_14B_2_15B_2_16B_2_17B_3_12B_3_13B_3_14B_3_15B_3_16B_3_17C_6_1+C_12_1l+C_12_4l-C_6_7l-C_12_7C_6_2+C_12_2l+C_12_5l-C_6_8l-C_12_8C_6_3+C_12_3l+C_12_6l-C_6_9l-C_12_9C_7_1+C_13_1l+C_1_4+C_13_4l-lC_1_7-C_7_7l-C_13_7C_7_2+C_13_2l+C_1_5+C_13_5l-lC_1_8-C_7_8l-C_13_8C_7_3+C_13_3l+C_1_6+C_13_6l-lC_1_9-C_7_9l-C_13_9C_8_1+C_14_1l+C_2_4+C_14_4l-lC_2_7-C_8_7l-C_14_7C_8_2+C_14_2l+C_2_5+C_14_5l-lC_2_8-C_8_8l-C_14_8C_8_3+C_14_3l+C_2_6+C_14_6l-lC_2_9-C_8_9l-C_14_9C_9_1+C_15_1l+C_3_4+C_15_4l-lC_3_7-C_9_7l-C_15_7C_9_2+C_15_2l+C_3_5+C_15_5l-lC_3_8-C_9_8l-C_15_8C_9_3+C_15_3l+C_3_6+C_15_6l-lC_3_9-C_9_9l-C_15_9C_10_1+C_16_1l+C_4_4+C_16_4l-lC_4_7-C_10_7l-C_16_7C_10_2+C_16_2l+C_4_5+C_16_5l-lC_4_8-C_10_8l-C_16_8C_10_3+C_16_3l+C_4_6+C_16_6l-lC_4_9-C_10_9l-C_16_9C_11_1+C_17_1l+C_5_4+C_17_4l-lC_5_7-C_11_7l-C_17_7C_11_2+C_17_2l+C_5_5+C_17_5l-lC_5_8-C_11_8l-C_17_8C_11_3+C_17_3l+C_5_6+C_17_6l-lC_5_9-C_11_9l-C_17_9+TraceMul-A_1_1-A_7_1l+lA_1_7-A_1_2-A_7_2l+lA_1_8-A_1_3-A_7_3l+lA_1_9-A_2_1-A_8_1l+lA_2_7-A_2_2-A_8_2l+lA_2_8-A_2_3-A_8_3l+lA_2_9-A_3_1-A_9_1l+lA_3_7-A_3_2-A_9_2l+lA_3_8-A_3_3-A_9_3l+lA_3_9B_1_6+B_7_6l-lB_1_12B_1_7+B_7_7l-lB_1_13B_1_8+B_7_8l-lB_1_14B_1_9+B_7_9l-lB_1_15B_1_10+B_7_10l-lB_1_16B_1_11+B_7_11l-lB_1_17B_2_6+B_8_6l-lB_2_12B_2_7+B_8_7l-lB_2_13B_2_8+B_8_8l-lB_2_14B_2_9+B_8_9l-lB_2_15B_2_10+B_8_10l-lB_2_16B_2_11+B_8_11l-lB_2_17B_3_6+B_9_6l-lB_3_12B_3_7+B_9_7l-lB_3_13B_3_8+B_9_8l-lB_3_14B_3_9+B_9_9l-lB_3_15B_3_10+B_9_10l-lB_3_16B_3_11+B_9_11l-lB_3_17C_6_1+C_12_1l-C_6_7lC_6_2+C_12_2l-C_6_8lC_6_3+C_12_3l-C_6_9lC_7_1+C_13_1l-C_7_7lC_7_2+C_13_2l-C_7_8lC_7_3+C_13_3l-C_7_9lC_8_1+C_14_1l-C_8_7lC_8_2+C_14_2l-C_8_8lC_8_3+C_14_3l-C_8_9lC_9_1+C_15_1l-C_9_7lC_9_2+C_15_2l-C_9_8lC_9_3+C_15_3l-C_9_9lC_10_1+C_16_1l-C_10_7lC_10_2+C_16_2l-C_10_8lC_10_3+C_16_3l-C_10_9lC_11_1+C_17_1l-C_11_7lC_11_2+C_17_2l-C_11_8lC_11_3+C_17_3l-C_11_9l+TraceMul-A_4_7l+A_4_1-A_4_8l+A_4_2-A_4_9l+A_4_3-A_5_7l+A_5_1-A_5_8l+A_5_2-A_5_9l+A_5_3-A_6_7l+A_6_1-A_6_8l+A_6_2-A_6_9l+A_6_3-lB_1_13+B_1_1-lB_1_14+B_1_2-lB_1_15+B_1_3-lB_1_16+B_1_4-lB_1_17+B_1_5-lB_2_13+B_2_1-lB_2_14+B_2_2-lB_2_15+B_2_3-lB_2_16+B_2_4-lB_2_17+B_2_5-lB_3_13+B_3_1-lB_3_14+B_3_2-lB_3_15+B_3_3-lB_3_16+B_3_4-lB_3_17+B_3_5-lC_1_7+C_1_4-lC_1_8+C_1_5-lC_1_9+C_1_6-lC_2_7+C_2_4-lC_2_8+C_2_5-lC_2_9+C_2_6-lC_3_7+C_3_4-lC_3_8+C_3_5-lC_3_9+C_3_6-lC_4_7+C_4_4-lC_4_8+C_4_5-lC_4_9+C_4_6-lC_5_7+C_5_4-lC_5_8+C_5_5-lC_5_9+C_5_6+TraceMulA_4_1+A_7_1lA_4_2+A_7_2lA_4_3+A_7_3lA_5_1+A_8_1lA_5_2+A_8_2lA_5_3+A_8_3lA_6_1+A_9_1lA_6_2+A_9_2lA_6_3+A_9_3lB_1_1+B_7_1lB_1_2+B_7_2lB_1_3+B_7_3lB_1_4+B_7_4lB_1_5+B_7_5lB_2_1+B_8_1lB_2_2+B_8_2lB_2_3+B_8_3lB_2_4+B_8_4lB_2_5+B_8_5lB_3_1+B_9_1lB_3_2+B_9_2lB_3_3+B_9_3lB_3_4+B_9_4lB_3_5+B_9_5lC_1_4+C_13_4lC_1_5+C_13_5lC_1_6+C_13_6lC_2_4+C_14_4lC_2_5+C_14_5lC_2_6+C_14_6lC_3_4+C_15_4lC_3_5+C_15_5lC_3_6+C_15_6lC_4_4+C_16_4lC_4_5+C_16_5lC_4_6+C_16_6lC_5_4+C_17_4lC_5_5+C_17_5lC_5_6+C_17_6l+TraceMul-A_4_1-A_7_1l-A_1_4-A_7_4l+lA_1_7+A_4_7l+A_7_7-A_4_2-A_7_2l-A_1_5-A_7_5l+lA_1_8+A_4_8l+A_7_8-A_4_3-A_7_3l-A_1_6-A_7_6l+lA_1_9+A_4_9l+A_7_9-A_5_1-A_8_1l-A_2_4-A_8_4l+lA_2_7+A_5_7l+A_8_7-A_5_2-A_8_2l-A_2_5-A_8_5l+lA_2_8+A_5_8l+A_8_8-A_5_3-A_8_3l-A_2_6-A_8_6l+lA_2_9+A_5_9l+A_8_9-A_6_1-A_9_1l-A_3_4-A_9_4l+lA_3_7+A_6_7l+A_9_7-A_6_2-A_9_2l-A_3_5-A_9_5l+lA_3_8+A_6_8l+A_9_8-A_6_3-A_9_3l-A_3_6-A_9_6l+lA_3_9+A_6_9l+A_9_9B_7_1B_7_2B_7_3B_7_4B_7_5B_8_1B_8_2B_8_3B_8_4B_8_5B_9_1B_9_2B_9_3B_9_4B_9_5C_1_7C_1_8C_1_9C_2_7C_2_8C_2_9C_3_7C_3_8C_3_9C_4_7C_4_8C_4_9C_5_7C_5_8C_5_9+TraceMul-A_4_1-A_7_1l+A_4_7l-A_4_2-A_7_2l+A_4_8l-A_4_3-A_7_3l+A_4_9l-A_5_1-A_8_1l+A_5_7l-A_5_2-A_8_2l+A_5_8l-A_5_3-A_8_3l+A_5_9l-A_6_1-A_9_1l+A_6_7l-A_6_2-A_9_2l+A_6_8l-A_6_3-A_9_3l+A_6_9l-lB_1_12B_1_1+B_7_1l-lB_1_13B_1_2+B_7_2l-lB_1_14B_1_3+B_7_3l-lB_1_15B_1_4+B_7_4l-lB_1_16B_1_5+B_7_5l-lB_1_17-lB_2_12B_2_1+B_8_1l-lB_2_13B_2_2+B_8_2l-lB_2_14B_2_3+B_8_3l-lB_2_15B_2_4+B_8_4l-lB_2_16B_2_5+B_8_5l-lB_2_17-lB_3_12B_3_1+B_9_1l-lB_3_13B_3_2+B_9_2l-lB_3_14B_3_3+B_9_3l-lB_3_15B_3_4+B_9_4l-lB_3_16B_3_5+B_9_5l-lB_3_17C_12_4lC_12_5lC_12_6lC_1_4+C_13_4l-lC_1_7C_1_5+C_13_5l-lC_1_8C_1_6+C_13_6l-lC_1_9C_2_4+C_14_4l-lC_2_7C_2_5+C_14_5l-lC_2_8C_2_6+C_14_6l-lC_2_9C_3_4+C_15_4l-lC_3_7C_3_5+C_15_5l-lC_3_8C_3_6+C_15_6l-lC_3_9C_4_4+C_16_4l-lC_4_7C_4_5+C_16_5l-lC_4_8C_4_6+C_16_6l-lC_4_9C_5_4+C_17_4l-lC_5_7C_5_5+C_17_5l-lC_5_8C_5_6+C_17_6l-lC_5_9+TraceMul-A_1_4-A_7_4l+lA_1_7-A_1_5-A_7_5l+lA_1_8-A_1_6-A_7_6l+lA_1_9-A_2_4-A_8_4l+lA_2_7-A_2_5-A_8_5l+lA_2_8-A_2_6-A_8_6l+lA_2_9-A_3_4-A_9_4l+lA_3_7-A_3_5-A_9_5l+lA_3_8-A_3_6-A_9_6l+lA_3_9-B_4_12lB_4_1+B_7_1l-B_4_13lB_4_2+B_7_2l-B_4_14lB_4_3+B_7_3l-B_4_15lB_4_4+B_7_4l-B_4_16lB_4_5+B_7_5l-B_4_17l-B_5_12lB_5_1+B_8_1l-B_5_13lB_5_2+B_8_2l-B_5_14lB_5_3+B_8_3l-B_5_15lB_5_4+B_8_4l-B_5_16lB_5_5+B_8_5l-B_5_17l-B_6_12lB_6_1+B_9_1l-B_6_13lB_6_2+B_9_2l-B_6_14lB_6_3+B_9_3l-B_6_15lB_6_4+B_9_4l-B_6_16lB_6_5+B_9_5l-B_6_17lC_12_1lC_12_2lC_12_3lC_1_1+C_13_1l-lC_1_7C_1_2+C_13_2l-lC_1_8C_1_3+C_13_3l-lC_1_9C_2_1+C_14_1l-lC_2_7C_2_2+C_14_2l-lC_2_8C_2_3+C_14_3l-lC_2_9C_3_1+C_15_1l-lC_3_7C_3_2+C_15_2l-lC_3_8C_3_3+C_15_3l-lC_3_9C_4_1+C_16_1l-lC_4_7C_4_2+C_16_2l-lC_4_8C_4_3+C_16_3l-lC_4_9C_5_1+C_17_1l-lC_5_7C_5_2+C_17_2l-lC_5_8C_5_3+C_17_3l-lC_5_9+TraceMul-lA_1_7+A_1_4-lA_1_8+A_1_5-lA_1_9+A_1_6-lA_2_7+A_2_4-lA_2_8+A_2_5-lA_2_9+A_2_6-lA_3_7+A_3_4-lA_3_8+A_3_5-lA_3_9+A_3_6-B_4_13l+B_4_1-B_4_14l+B_4_2-B_4_15l+B_4_3-B_4_16l+B_4_4-B_4_17l+B_4_5-B_5_13l+B_5_1-B_5_14l+B_5_2-B_5_15l+B_5_3-B_5_16l+B_5_4-B_5_17l+B_5_5-B_6_13l+B_6_1-B_6_14l+B_6_2-B_6_15l+B_6_3-B_6_16l+B_6_4-B_6_17l+B_6_5-lC_1_7+C_1_1-lC_1_8+C_1_2-lC_1_9+C_1_3-lC_2_7+C_2_1-lC_2_8+C_2_2-lC_2_9+C_2_3-lC_3_7+C_3_1-lC_3_8+C_3_2-lC_3_9+C_3_3-lC_4_7+C_4_1-lC_4_8+C_4_2-lC_4_9+C_4_3-lC_5_7+C_5_1-lC_5_8+C_5_2-lC_5_9+C_5_3+TraceMulA_1_4+A_7_4lA_1_5+A_7_5lA_1_6+A_7_6lA_2_4+A_8_4lA_2_5+A_8_5lA_2_6+A_8_6lA_3_4+A_9_4lA_3_5+A_9_5lA_3_6+A_9_6lB_4_1+B_7_1lB_4_2+B_7_2lB_4_3+B_7_3lB_4_4+B_7_4lB_4_5+B_7_5lB_5_1+B_8_1lB_5_2+B_8_2lB_5_3+B_8_3lB_5_4+B_8_4lB_5_5+B_8_5lB_6_1+B_9_1lB_6_2+B_9_2lB_6_3+B_9_3lB_6_4+B_9_4lB_6_5+B_9_5lC_1_1+C_13_1lC_1_2+C_13_2lC_1_3+C_13_3lC_2_1+C_14_1lC_2_2+C_14_2lC_2_3+C_14_3lC_3_1+C_15_1lC_3_2+C_15_2lC_3_3+C_15_3lC_4_1+C_16_1lC_4_2+C_16_2lC_4_3+C_16_3lC_5_1+C_17_1lC_5_2+C_17_2lC_5_3+C_17_3l+TraceMulA_4_4A_4_5A_4_6A_5_4A_5_5A_5_6A_6_4A_6_5A_6_6B_4_1B_4_2B_4_3B_4_4B_4_5B_5_1B_5_2B_5_3B_5_4B_5_5B_6_1B_6_2B_6_3B_6_4B_6_5C_1_4C_1_5C_1_6C_2_4C_2_5C_2_6C_3_4C_3_5C_3_6C_4_4C_4_5C_4_6C_5_4C_5_5C_5_6+TraceMulA_4_1A_4_2A_4_3A_5_1A_5_2A_5_3A_6_1A_6_2A_6_3B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11C_6_4C_6_5C_6_6C_7_4C_7_5C_7_6C_8_4C_8_5C_8_6C_9_4C_9_5C_9_6C_10_4C_10_5C_10_6C_11_4C_11_5C_11_6+TraceMulA_1_1A_1_2A_1_3A_2_1A_2_2A_2_3A_3_1A_3_2A_3_3B_1_1B_1_2B_1_3B_1_4B_1_5B_2_1B_2_2B_2_3B_2_4B_2_5B_3_1B_3_2B_3_3B_3_4B_3_5C_1_1C_1_2C_1_3C_2_1C_2_2C_2_3C_3_1C_3_2C_3_3C_4_1C_4_2C_4_3C_5_1C_5_2C_5_3+TraceMulA_1_4A_1_5A_1_6A_2_4A_2_5A_2_6A_3_4A_3_5A_3_6B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11C_6_1C_6_2C_6_3C_7_1C_7_2C_7_3C_8_1C_8_2C_8_3C_9_1C_9_2C_9_3C_10_1C_10_2C_10_3C_11_1C_11_2C_11_3TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_1_8A_1_9A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_2_8A_2_9A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_3_8A_3_9A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_4_8A_4_9A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7A_5_8A_5_9A_6_1A_6_2A_6_3A_6_4A_6_5A_6_6A_6_7A_6_8A_6_9A_7_1A_7_2A_7_3A_7_4A_7_5A_7_6A_7_7A_7_8A_7_9A_8_1A_8_2A_8_3A_8_4A_8_5A_8_6A_8_7A_8_8A_8_9A_9_1A_9_2A_9_3A_9_4A_9_5A_9_6A_9_7A_9_8A_9_9B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_1_12B_1_13B_1_14B_1_15B_1_16B_1_17B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_2_12B_2_13B_2_14B_2_15B_2_16B_2_17B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_3_12B_3_13B_3_14B_3_15B_3_16B_3_17B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_4_12B_4_13B_4_14B_4_15B_4_16B_4_17B_5_1B_5_2B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_5_12B_5_13B_5_14B_5_15B_5_16B_5_17B_6_1B_6_2B_6_3B_6_4B_6_5B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11B_6_12B_6_13B_6_14B_6_15B_6_16B_6_17B_7_1B_7_2B_7_3B_7_4B_7_5B_7_6B_7_7B_7_8B_7_9B_7_10B_7_11B_7_12B_7_13B_7_14B_7_15B_7_16B_7_17B_8_1B_8_2B_8_3B_8_4B_8_5B_8_6B_8_7B_8_8B_8_9B_8_10B_8_11B_8_12B_8_13B_8_14B_8_15B_8_16B_8_17B_9_1B_9_2B_9_3B_9_4B_9_5B_9_6B_9_7B_9_8B_9_9B_9_10B_9_11B_9_12B_9_13B_9_14B_9_15B_9_16B_9_17C_1_1C_1_2C_1_3C_1_4C_1_5C_1_6C_1_7C_1_8C_1_9C_2_1C_2_2C_2_3C_2_4C_2_5C_2_6C_2_7C_2_8C_2_9C_3_1C_3_2C_3_3C_3_4C_3_5C_3_6C_3_7C_3_8C_3_9C_4_1C_4_2C_4_3C_4_4C_4_5C_4_6C_4_7C_4_8C_4_9C_5_1C_5_2C_5_3C_5_4C_5_5C_5_6C_5_7C_5_8C_5_9C_6_1C_6_2C_6_3C_6_4C_6_5C_6_6C_6_7C_6_8C_6_9C_7_1C_7_2C_7_3C_7_4C_7_5C_7_6C_7_7C_7_8C_7_9C_8_1C_8_2C_8_3C_8_4C_8_5C_8_6C_8_7C_8_8C_8_9C_9_1C_9_2C_9_3C_9_4C_9_5C_9_6C_9_7C_9_8C_9_9C_10_1C_10_2C_10_3C_10_4C_10_5C_10_6C_10_7C_10_8C_10_9C_11_1C_11_2C_11_3C_11_4C_11_5C_11_6C_11_7C_11_8C_11_9C_12_1C_12_2C_12_3C_12_4C_12_5C_12_6C_12_7C_12_8C_12_9C_13_1C_13_2C_13_3C_13_4C_13_5C_13_6C_13_7C_13_8C_13_9C_14_1C_14_2C_14_3C_14_4C_14_5C_14_6C_14_7C_14_8C_14_9C_15_1C_15_2C_15_3C_15_4C_15_5C_15_6C_15_7C_15_8C_15_9C_16_1C_16_2C_16_3C_16_4C_16_5C_16_6C_16_7C_16_8C_16_9C_17_1C_17_2C_17_3C_17_4C_17_5C_17_6C_17_7C_17_8C_17_9TraceMulA_4_7lA_4_4A_4_8lA_4_5A_4_9lA_4_6A_5_7lA_5_4A_5_8lA_5_5A_5_9lA_5_6A_6_7lA_6_4A_6_8lA_6_5A_6_9lA_6_6B_4_12lB_4_6B_4_13lB_4_7B_4_14lB_4_8B_4_15lB_4_9B_4_16lB_4_10B_4_17lB_4_11B_5_12lB_5_6B_5_13lB_5_7B_5_14lB_5_8B_5_15lB_5_9B_5_16lB_5_10B_5_17lB_5_11B_6_12lB_6_6B_6_13lB_6_7B_6_14lB_6_8B_6_15lB_6_9B_6_16lB_6_10B_6_17lB_6_11C_6_7lC_6_4C_6_8lC_6_5C_6_9lC_6_6C_7_7lC_7_4C_7_8lC_7_5C_7_9lC_7_6C_8_7lC_8_4C_8_8lC_8_5C_8_9lC_8_6C_9_7lC_9_4C_9_8lC_9_5C_9_9lC_9_6C_10_7lC_10_4C_10_8lC_10_5C_10_9lC_10_6C_11_7lC_11_4C_11_8lC_11_5C_11_9lC_11_6TraceMulA_4_4A_7_4lA_4_5A_7_5lA_4_6A_7_6lA_5_4A_8_4lA_5_5A_8_5lA_5_6A_8_6lA_6_4A_9_4lA_6_5A_9_5lA_6_6A_9_6lB_4_6B_7_6lB_4_7B_7_7lB_4_8B_7_8lB_4_9B_7_9lB_4_10B_7_10lB_4_11B_7_11lB_5_6B_8_6lB_5_7B_8_7lB_5_8B_8_8lB_5_9B_8_9lB_5_10B_8_10lB_5_11B_8_11lB_6_6B_9_6lB_6_7B_9_7lB_6_8B_9_8lB_6_9B_9_9lB_6_10B_9_10lB_6_11B_9_11lC_6_4C_12_4lC_6_5C_12_5lC_6_6C_12_6lC_7_4C_13_4lC_7_5C_13_5lC_7_6C_13_6lC_8_4C_14_4lC_8_5C_14_5lC_8_6C_14_6lC_9_4C_15_4lC_9_5C_15_5lC_9_6C_15_6lC_10_4C_16_4lC_10_5C_16_5lC_10_6C_16_6lC_11_4C_17_4lC_11_5C_17_5lC_11_6C_17_6lTraceMulA_7_7A_7_8A_7_9A_8_7A_8_8A_8_9A_9_7A_9_8A_9_9B_7_12B_7_13B_7_14B_7_15B_7_16B_7_17B_8_12B_8_13B_8_14B_8_15B_8_16B_8_17B_9_12B_9_13B_9_14B_9_15B_9_16B_9_17C_12_7C_12_8C_12_9C_13_7C_13_8C_13_9C_14_7C_14_8C_14_9C_15_7C_15_8C_15_9C_16_7C_16_8C_16_9C_17_7C_17_8C_17_9TraceMulA_4_7A_4_8A_4_9A_5_7A_5_8A_5_9A_6_7A_6_8A_6_9B_4_6B_7_6llB_1_12B_4_12lB_7_12B_1_1B_7_1lB_4_7B_7_7llB_1_13B_4_13lB_7_13B_1_2B_7_2lB_4_8B_7_8llB_1_14B_4_14lB_7_14B_1_3B_7_3lB_4_9B_7_9llB_1_15B_4_15lB_7_15B_1_4B_7_4lB_4_10B_7_10llB_1_16B_4_16lB_7_16B_1_5B_7_5lB_4_11B_7_11llB_1_17B_4_17lB_7_17B_5_6B_8_6llB_2_12B_5_12lB_8_12B_2_1B_8_1lB_5_7B_8_7llB_2_13B_5_13lB_8_13B_2_2B_8_2lB_5_8B_8_8llB_2_14B_5_14lB_8_14B_2_3B_8_3lB_5_9B_8_9llB_2_15B_5_15lB_8_15B_2_4B_8_4lB_5_10B_8_10llB_2_16B_5_16lB_8_16B_2_5B_8_5lB_5_11B_8_11llB_2_17B_5_17lB_8_17B_6_6B_9_6llB_3_12B_6_12lB_9_12B_3_1B_9_1lB_6_7B_9_7llB_3_13B_6_13lB_9_13B_3_2B_9_2lB_6_8B_9_8llB_3_14B_6_14lB_9_14B_3_3B_9_3lB_6_9B_9_9llB_3_15B_6_15lB_9_15B_3_4B_9_4lB_6_10B_9_10llB_3_16B_6_16lB_9_16B_3_5B_9_5lB_6_11B_9_11llB_3_17B_6_17lB_9_17C_12_4C_12_5C_12_6C_13_4C_13_5C_13_6C_14_4C_14_5C_14_6C_15_4C_15_5C_15_6C_16_4C_16_5C_16_6C_17_4C_17_5C_17_6TraceMulA_1_1A_7_1lA_4_4A_7_4llA_1_7A_4_7lA_7_7A_1_2A_7_2lA_4_5A_7_5llA_1_8A_4_8lA_7_8A_1_3A_7_3lA_4_6A_7_6llA_1_9A_4_9lA_7_9A_2_1A_8_1lA_5_4A_8_4llA_2_7A_5_7lA_8_7A_2_2A_8_2lA_5_5A_8_5llA_2_8A_5_8lA_8_8A_2_3A_8_3lA_5_6A_8_6llA_2_9A_5_9lA_8_9A_3_1A_9_1lA_6_4A_9_4llA_3_7A_6_7lA_9_7A_3_2A_9_2lA_6_5A_9_5llA_3_8A_6_8lA_9_8A_3_3A_9_3lA_6_6A_9_6llA_3_9A_6_9lA_9_9B_7_6B_7_7B_7_8B_7_9B_7_10B_7_11B_8_6B_8_7B_8_8B_8_9B_8_10B_8_11B_9_6B_9_7B_9_8B_9_9B_9_10B_9_11C_6_7C_6_8C_6_9C_7_7C_7_8C_7_9C_8_7C_8_8C_8_9C_9_7C_9_8C_9_9C_10_7C_10_8C_10_9C_11_7C_11_8C_11_9TraceMulA_7_4A_7_5A_7_6A_8_4A_8_5A_8_6A_9_4A_9_5A_9_6B_4_12B_4_13B_4_14B_4_15B_4_16B_4_17B_5_12B_5_13B_5_14B_5_15B_5_16B_5_17B_6_12B_6_13B_6_14B_6_15B_6_16B_6_17C_12_1lC_6_4C_12_4lC_6_7lC_12_7C_12_2lC_6_5C_12_5lC_6_8lC_12_8C_12_3lC_6_6C_12_6lC_6_9lC_12_9C_1_1C_13_1lC_7_4C_13_4llC_1_7C_7_7lC_13_7C_1_2C_13_2lC_7_5C_13_5llC_1_8C_7_8lC_13_8C_1_3C_13_3lC_7_6C_13_6llC_1_9C_7_9lC_13_9C_2_1C_14_1lC_8_4C_14_4llC_2_7C_8_7lC_14_7C_2_2C_14_2lC_8_5C_14_5llC_2_8C_8_8lC_14_8C_2_3C_14_3lC_8_6C_14_6llC_2_9C_8_9lC_14_9C_3_1C_15_1lC_9_4C_15_4llC_3_7C_9_7lC_15_7C_3_2C_15_2lC_9_5C_15_5llC_3_8C_9_8lC_15_8C_3_3C_15_3lC_9_6C_15_6llC_3_9C_9_9lC_15_9C_4_1C_16_1lC_10_4C_16_4llC_4_7C_10_7lC_16_7C_4_2C_16_2lC_10_5C_16_5llC_4_8C_10_8lC_16_8C_4_3C_16_3lC_10_6C_16_6llC_4_9C_10_9lC_16_9C_5_1C_17_1lC_11_4C_17_4llC_5_7C_11_7lC_17_7C_5_2C_17_2lC_11_5C_17_5llC_5_8C_11_8lC_17_8C_5_3C_17_3lC_11_6C_17_6llC_5_9C_11_9lC_17_9TraceMulA_4_4A_7_4lA_4_7lA_4_5A_7_5lA_4_8lA_4_6A_7_6lA_4_9lA_5_4A_8_4lA_5_7lA_5_5A_8_5lA_5_8lA_5_6A_8_6lA_5_9lA_6_4A_9_4lA_6_7lA_6_5A_9_5lA_6_8lA_6_6A_9_6lA_6_9lB_4_6B_7_6lB_4_12lB_4_7B_7_7lB_4_13lB_4_8B_7_8lB_4_14lB_4_9B_7_9lB_4_15lB_4_10B_7_10lB_4_16lB_4_11B_7_11lB_4_17lB_5_6B_8_6lB_5_12lB_5_7B_8_7lB_5_13lB_5_8B_8_8lB_5_14lB_5_9B_8_9lB_5_15lB_5_10B_8_10lB_5_16lB_5_11B_8_11lB_5_17lB_6_6B_9_6lB_6_12lB_6_7B_9_7lB_6_13lB_6_8B_9_8lB_6_14lB_6_9B_9_9lB_6_15lB_6_10B_9_10lB_6_16lB_6_11B_9_11lB_6_17lC_6_4C_12_4lC_6_7lC_6_5C_12_5lC_6_8lC_6_6C_12_6lC_6_9lC_7_4C_13_4lC_7_7lC_7_5C_13_5lC_7_8lC_7_6C_13_6lC_7_9lC_8_4C_14_4lC_8_7lC_8_5C_14_5lC_8_8lC_8_6C_14_6lC_8_9lC_9_4C_15_4lC_9_7lC_9_5C_15_5lC_9_8lC_9_6C_15_6lC_9_9lC_10_4C_16_4lC_10_7lC_10_5C_16_5lC_10_8lC_10_6C_16_6lC_10_9lC_11_4C_17_4lC_11_7lC_11_5C_17_5lC_11_8lC_11_6C_17_6lC_11_9lTraceMullA_1_7A_1_1lA_1_8A_1_2lA_1_9A_1_3lA_2_7A_2_1lA_2_8A_2_2lA_2_9A_2_3lA_3_7A_3_1lA_3_8A_3_2lA_3_9A_3_3lB_1_12B_1_6lB_1_13B_1_7lB_1_14B_1_8lB_1_15B_1_9lB_1_16B_1_10lB_1_17B_1_11lB_2_12B_2_6lB_2_13B_2_7lB_2_14B_2_8lB_2_15B_2_9lB_2_16B_2_10lB_2_17B_2_11lB_3_12B_3_6lB_3_13B_3_7lB_3_14B_3_8lB_3_15B_3_9lB_3_16B_3_10lB_3_17B_3_11C_6_7lC_6_1C_6_8lC_6_2C_6_9lC_6_3C_7_7lC_7_1C_7_8lC_7_2C_7_9lC_7_3C_8_7lC_8_1C_8_8lC_8_2C_8_9lC_8_3C_9_7lC_9_1C_9_8lC_9_2C_9_9lC_9_3C_10_7lC_10_1C_10_8lC_10_2C_10_9lC_10_3C_11_7lC_11_1C_11_8lC_11_2C_11_9lC_11_3TraceMulA_1_1A_7_1lA_1_2A_7_2lA_1_3A_7_3lA_2_1A_8_1lA_2_2A_8_2lA_2_3A_8_3lA_3_1A_9_1lA_3_2A_9_2lA_3_3A_9_3lB_1_6B_7_6lB_1_7B_7_7lB_1_8B_7_8lB_1_9B_7_9lB_1_10B_7_10lB_1_11B_7_11lB_2_6B_8_6lB_2_7B_8_7lB_2_8B_8_8lB_2_9B_8_9lB_2_10B_8_10lB_2_11B_8_11lB_3_6B_9_6lB_3_7B_9_7lB_3_8B_9_8lB_3_9B_9_9lB_3_10B_9_10lB_3_11B_9_11lC_6_1C_12_1lC_6_2C_12_2lC_6_3C_12_3lC_7_1C_13_1lC_7_2C_13_2lC_7_3C_13_3lC_8_1C_14_1lC_8_2C_14_2lC_8_3C_14_3lC_9_1C_15_1lC_9_2C_15_2lC_9_3C_15_3lC_10_1C_16_1lC_10_2C_16_2lC_10_3C_16_3lC_11_1C_17_1lC_11_2C_17_2lC_11_3C_17_3lTraceMulA_1_7A_1_8A_1_9A_2_7A_2_8A_2_9A_3_7A_3_8A_3_9B_1_6B_7_6llB_1_12B_4_12lB_7_12B_4_1B_7_1lB_1_7B_7_7llB_1_13B_4_13lB_7_13B_4_2B_7_2lB_1_8B_7_8llB_1_14B_4_14lB_7_14B_4_3B_7_3lB_1_9B_7_9llB_1_15B_4_15lB_7_15B_4_4B_7_4lB_1_10B_7_10llB_1_16B_4_16lB_7_16B_4_5B_7_5lB_1_11B_7_11llB_1_17B_4_17lB_7_17B_2_6B_8_6llB_2_12B_5_12lB_8_12B_5_1B_8_1lB_2_7B_8_7llB_2_13B_5_13lB_8_13B_5_2B_8_2lB_2_8B_8_8llB_2_14B_5_14lB_8_14B_5_3B_8_3lB_2_9B_8_9llB_2_15B_5_15lB_8_15B_5_4B_8_4lB_2_10B_8_10llB_2_16B_5_16lB_8_16B_5_5B_8_5lB_2_11B_8_11llB_2_17B_5_17lB_8_17B_3_6B_9_6llB_3_12B_6_12lB_9_12B_6_1B_9_1lB_3_7B_9_7llB_3_13B_6_13lB_9_13B_6_2B_9_2lB_3_8B_9_8llB_3_14B_6_14lB_9_14B_6_3B_9_3lB_3_9B_9_9llB_3_15B_6_15lB_9_15B_6_4B_9_4lB_3_10B_9_10llB_3_16B_6_16lB_9_16B_6_5B_9_5lB_3_11B_9_11llB_3_17B_6_17lB_9_17C_12_1C_12_2C_12_3C_13_1C_13_2C_13_3C_14_1C_14_2C_14_3C_15_1C_15_2C_15_3C_16_1C_16_2C_16_3C_17_1C_17_2C_17_3TraceMulA_7_1A_7_2A_7_3A_8_1A_8_2A_8_3A_9_1A_9_2A_9_3B_1_12B_1_13B_1_14B_1_15B_1_16B_1_17B_2_12B_2_13B_2_14B_2_15B_2_16B_2_17B_3_12B_3_13B_3_14B_3_15B_3_16B_3_17C_6_1C_12_1lC_12_4lC_6_7lC_12_7C_6_2C_12_2lC_12_5lC_6_8lC_12_8C_6_3C_12_3lC_12_6lC_6_9lC_12_9C_7_1C_13_1lC_1_4C_13_4llC_1_7C_7_7lC_13_7C_7_2C_13_2lC_1_5C_13_5llC_1_8C_7_8lC_13_8C_7_3C_13_3lC_1_6C_13_6llC_1_9C_7_9lC_13_9C_8_1C_14_1lC_2_4C_14_4llC_2_7C_8_7lC_14_7C_8_2C_14_2lC_2_5C_14_5llC_2_8C_8_8lC_14_8C_8_3C_14_3lC_2_6C_14_6llC_2_9C_8_9lC_14_9C_9_1C_15_1lC_3_4C_15_4llC_3_7C_9_7lC_15_7C_9_2C_15_2lC_3_5C_15_5llC_3_8C_9_8lC_15_8C_9_3C_15_3lC_3_6C_15_6llC_3_9C_9_9lC_15_9C_10_1C_16_1lC_4_4C_16_4llC_4_7C_10_7lC_16_7C_10_2C_16_2lC_4_5C_16_5llC_4_8C_10_8lC_16_8C_10_3C_16_3lC_4_6C_16_6llC_4_9C_10_9lC_16_9C_11_1C_17_1lC_5_4C_17_4llC_5_7C_11_7lC_17_7C_11_2C_17_2lC_5_5C_17_5llC_5_8C_11_8lC_17_8C_11_3C_17_3lC_5_6C_17_6llC_5_9C_11_9lC_17_9TraceMulA_1_1A_7_1llA_1_7A_1_2A_7_2llA_1_8A_1_3A_7_3llA_1_9A_2_1A_8_1llA_2_7A_2_2A_8_2llA_2_8A_2_3A_8_3llA_2_9A_3_1A_9_1llA_3_7A_3_2A_9_2llA_3_8A_3_3A_9_3llA_3_9B_1_6B_7_6llB_1_12B_1_7B_7_7llB_1_13B_1_8B_7_8llB_1_14B_1_9B_7_9llB_1_15B_1_10B_7_10llB_1_16B_1_11B_7_11llB_1_17B_2_6B_8_6llB_2_12B_2_7B_8_7llB_2_13B_2_8B_8_8llB_2_14B_2_9B_8_9llB_2_15B_2_10B_8_10llB_2_16B_2_11B_8_11llB_2_17B_3_6B_9_6llB_3_12B_3_7B_9_7llB_3_13B_3_8B_9_8llB_3_14B_3_9B_9_9llB_3_15B_3_10B_9_10llB_3_16B_3_11B_9_11llB_3_17C_6_1C_12_1lC_6_7lC_6_2C_12_2lC_6_8lC_6_3C_12_3lC_6_9lC_7_1C_13_1lC_7_7lC_7_2C_13_2lC_7_8lC_7_3C_13_3lC_7_9lC_8_1C_14_1lC_8_7lC_8_2C_14_2lC_8_8lC_8_3C_14_3lC_8_9lC_9_1C_15_1lC_9_7lC_9_2C_15_2lC_9_8lC_9_3C_15_3lC_9_9lC_10_1C_16_1lC_10_7lC_10_2C_16_2lC_10_8lC_10_3C_16_3lC_10_9lC_11_1C_17_1lC_11_7lC_11_2C_17_2lC_11_8lC_11_3C_17_3lC_11_9lTraceMulA_4_7lA_4_1A_4_8lA_4_2A_4_9lA_4_3A_5_7lA_5_1A_5_8lA_5_2A_5_9lA_5_3A_6_7lA_6_1A_6_8lA_6_2A_6_9lA_6_3lB_1_13B_1_1lB_1_14B_1_2lB_1_15B_1_3lB_1_16B_1_4lB_1_17B_1_5lB_2_13B_2_1lB_2_14B_2_2lB_2_15B_2_3lB_2_16B_2_4lB_2_17B_2_5lB_3_13B_3_1lB_3_14B_3_2lB_3_15B_3_3lB_3_16B_3_4lB_3_17B_3_5lC_1_7C_1_4lC_1_8C_1_5lC_1_9C_1_6lC_2_7C_2_4lC_2_8C_2_5lC_2_9C_2_6lC_3_7C_3_4lC_3_8C_3_5lC_3_9C_3_6lC_4_7C_4_4lC_4_8C_4_5lC_4_9C_4_6lC_5_7C_5_4lC_5_8C_5_5lC_5_9C_5_6TraceMulA_4_1A_7_1lA_4_2A_7_2lA_4_3A_7_3lA_5_1A_8_1lA_5_2A_8_2lA_5_3A_8_3lA_6_1A_9_1lA_6_2A_9_2lA_6_3A_9_3lB_1_1B_7_1lB_1_2B_7_2lB_1_3B_7_3lB_1_4B_7_4lB_1_5B_7_5lB_2_1B_8_1lB_2_2B_8_2lB_2_3B_8_3lB_2_4B_8_4lB_2_5B_8_5lB_3_1B_9_1lB_3_2B_9_2lB_3_3B_9_3lB_3_4B_9_4lB_3_5B_9_5lC_1_4C_13_4lC_1_5C_13_5lC_1_6C_13_6lC_2_4C_14_4lC_2_5C_14_5lC_2_6C_14_6lC_3_4C_15_4lC_3_5C_15_5lC_3_6C_15_6lC_4_4C_16_4lC_4_5C_16_5lC_4_6C_16_6lC_5_4C_17_4lC_5_5C_17_5lC_5_6C_17_6lTraceMulA_4_1A_7_1lA_1_4A_7_4llA_1_7A_4_7lA_7_7A_4_2A_7_2lA_1_5A_7_5llA_1_8A_4_8lA_7_8A_4_3A_7_3lA_1_6A_7_6llA_1_9A_4_9lA_7_9A_5_1A_8_1lA_2_4A_8_4llA_2_7A_5_7lA_8_7A_5_2A_8_2lA_2_5A_8_5llA_2_8A_5_8lA_8_8A_5_3A_8_3lA_2_6A_8_6llA_2_9A_5_9lA_8_9A_6_1A_9_1lA_3_4A_9_4llA_3_7A_6_7lA_9_7A_6_2A_9_2lA_3_5A_9_5llA_3_8A_6_8lA_9_8A_6_3A_9_3lA_3_6A_9_6llA_3_9A_6_9lA_9_9B_7_1B_7_2B_7_3B_7_4B_7_5B_8_1B_8_2B_8_3B_8_4B_8_5B_9_1B_9_2B_9_3B_9_4B_9_5C_1_7C_1_8C_1_9C_2_7C_2_8C_2_9C_3_7C_3_8C_3_9C_4_7C_4_8C_4_9C_5_7C_5_8C_5_9TraceMulA_4_1A_7_1lA_4_7lA_4_2A_7_2lA_4_8lA_4_3A_7_3lA_4_9lA_5_1A_8_1lA_5_7lA_5_2A_8_2lA_5_8lA_5_3A_8_3lA_5_9lA_6_1A_9_1lA_6_7lA_6_2A_9_2lA_6_8lA_6_3A_9_3lA_6_9llB_1_12B_1_1B_7_1llB_1_13B_1_2B_7_2llB_1_14B_1_3B_7_3llB_1_15B_1_4B_7_4llB_1_16B_1_5B_7_5llB_1_17lB_2_12B_2_1B_8_1llB_2_13B_2_2B_8_2llB_2_14B_2_3B_8_3llB_2_15B_2_4B_8_4llB_2_16B_2_5B_8_5llB_2_17lB_3_12B_3_1B_9_1llB_3_13B_3_2B_9_2llB_3_14B_3_3B_9_3llB_3_15B_3_4B_9_4llB_3_16B_3_5B_9_5llB_3_17C_12_4lC_12_5lC_12_6lC_1_4C_13_4llC_1_7C_1_5C_13_5llC_1_8C_1_6C_13_6llC_1_9C_2_4C_14_4llC_2_7C_2_5C_14_5llC_2_8C_2_6C_14_6llC_2_9C_3_4C_15_4llC_3_7C_3_5C_15_5llC_3_8C_3_6C_15_6llC_3_9C_4_4C_16_4llC_4_7C_4_5C_16_5llC_4_8C_4_6C_16_6llC_4_9C_5_4C_17_4llC_5_7C_5_5C_17_5llC_5_8C_5_6C_17_6llC_5_9TraceMulA_1_4A_7_4llA_1_7A_1_5A_7_5llA_1_8A_1_6A_7_6llA_1_9A_2_4A_8_4llA_2_7A_2_5A_8_5llA_2_8A_2_6A_8_6llA_2_9A_3_4A_9_4llA_3_7A_3_5A_9_5llA_3_8A_3_6A_9_6llA_3_9B_4_12lB_4_1B_7_1lB_4_13lB_4_2B_7_2lB_4_14lB_4_3B_7_3lB_4_15lB_4_4B_7_4lB_4_16lB_4_5B_7_5lB_4_17lB_5_12lB_5_1B_8_1lB_5_13lB_5_2B_8_2lB_5_14lB_5_3B_8_3lB_5_15lB_5_4B_8_4lB_5_16lB_5_5B_8_5lB_5_17lB_6_12lB_6_1B_9_1lB_6_13lB_6_2B_9_2lB_6_14lB_6_3B_9_3lB_6_15lB_6_4B_9_4lB_6_16lB_6_5B_9_5lB_6_17lC_12_1lC_12_2lC_12_3lC_1_1C_13_1llC_1_7C_1_2C_13_2llC_1_8C_1_3C_13_3llC_1_9C_2_1C_14_1llC_2_7C_2_2C_14_2llC_2_8C_2_3C_14_3llC_2_9C_3_1C_15_1llC_3_7C_3_2C_15_2llC_3_8C_3_3C_15_3llC_3_9C_4_1C_16_1llC_4_7C_4_2C_16_2llC_4_8C_4_3C_16_3llC_4_9C_5_1C_17_1llC_5_7C_5_2C_17_2llC_5_8C_5_3C_17_3llC_5_9TraceMullA_1_7A_1_4lA_1_8A_1_5lA_1_9A_1_6lA_2_7A_2_4lA_2_8A_2_5lA_2_9A_2_6lA_3_7A_3_4lA_3_8A_3_5lA_3_9A_3_6B_4_13lB_4_1B_4_14lB_4_2B_4_15lB_4_3B_4_16lB_4_4B_4_17lB_4_5B_5_13lB_5_1B_5_14lB_5_2B_5_15lB_5_3B_5_16lB_5_4B_5_17lB_5_5B_6_13lB_6_1B_6_14lB_6_2B_6_15lB_6_3B_6_16lB_6_4B_6_17lB_6_5lC_1_7C_1_1lC_1_8C_1_2lC_1_9C_1_3lC_2_7C_2_1lC_2_8C_2_2lC_2_9C_2_3lC_3_7C_3_1lC_3_8C_3_2lC_3_9C_3_3lC_4_7C_4_1lC_4_8C_4_2lC_4_9C_4_3lC_5_7C_5_1lC_5_8C_5_2lC_5_9C_5_3TraceMulA_1_4A_7_4lA_1_5A_7_5lA_1_6A_7_6lA_2_4A_8_4lA_2_5A_8_5lA_2_6A_8_6lA_3_4A_9_4lA_3_5A_9_5lA_3_6A_9_6lB_4_1B_7_1lB_4_2B_7_2lB_4_3B_7_3lB_4_4B_7_4lB_4_5B_7_5lB_5_1B_8_1lB_5_2B_8_2lB_5_3B_8_3lB_5_4B_8_4lB_5_5B_8_5lB_6_1B_9_1lB_6_2B_9_2lB_6_3B_9_3lB_6_4B_9_4lB_6_5B_9_5lC_1_1C_13_1lC_1_2C_13_2lC_1_3C_13_3lC_2_1C_14_1lC_2_2C_14_2lC_2_3C_14_3lC_3_1C_15_1lC_3_2C_15_2lC_3_3C_15_3lC_4_1C_16_1lC_4_2C_16_2lC_4_3C_16_3lC_5_1C_17_1lC_5_2C_17_2lC_5_3C_17_3lTraceMulA_4_4A_4_5A_4_6A_5_4A_5_5A_5_6A_6_4A_6_5A_6_6B_4_1B_4_2B_4_3B_4_4B_4_5B_5_1B_5_2B_5_3B_5_4B_5_5B_6_1B_6_2B_6_3B_6_4B_6_5C_1_4C_1_5C_1_6C_2_4C_2_5C_2_6C_3_4C_3_5C_3_6C_4_4C_4_5C_4_6C_5_4C_5_5C_5_6TraceMulA_4_1A_4_2A_4_3A_5_1A_5_2A_5_3A_6_1A_6_2A_6_3B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11C_6_4C_6_5C_6_6C_7_4C_7_5C_7_6C_8_4C_8_5C_8_6C_9_4C_9_5C_9_6C_10_4C_10_5C_10_6C_11_4C_11_5C_11_6TraceMulA_1_1A_1_2A_1_3A_2_1A_2_2A_2_3A_3_1A_3_2A_3_3B_1_1B_1_2B_1_3B_1_4B_1_5B_2_1B_2_2B_2_3B_2_4B_2_5B_3_1B_3_2B_3_3B_3_4B_3_5C_1_1C_1_2C_1_3C_2_1C_2_2C_2_3C_3_1C_3_2C_3_3C_4_1C_4_2C_4_3C_5_1C_5_2C_5_3TraceMulA_1_4A_1_5A_1_6A_2_4A_2_5A_2_6A_3_4A_3_5A_3_6B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11C_6_1C_6_2C_6_3C_7_1C_7_2C_7_3C_8_1C_8_2C_8_3C_9_1C_9_2C_9_3C_10_1C_10_2C_10_3C_11_1C_11_2C_11_3Trace(Mul(Matrix(9, 9, [[A_1_1,A_1_2,A_1_3,A_1_4,A_1_5,A_1_6,A_1_7,A_1_8,A_1_9],[A_2_1,A_2_2,A_2_3,A_2_4,A_2_5,A_2_6,A_2_7,A_2_8,A_2_9],[A_3_1,A_3_2,A_3_3,A_3_4,A_3_5,A_3_6,A_3_7,A_3_8,A_3_9],[A_4_1,A_4_2,A_4_3,A_4_4,A_4_5,A_4_6,A_4_7,A_4_8,A_4_9],[A_5_1,A_5_2,A_5_3,A_5_4,A_5_5,A_5_6,A_5_7,A_5_8,A_5_9],[A_6_1,A_6_2,A_6_3,A_6_4,A_6_5,A_6_6,A_6_7,A_6_8,A_6_9],[A_7_1,A_7_2,A_7_3,A_7_4,A_7_5,A_7_6,A_7_7,A_7_8,A_7_9],[A_8_1,A_8_2,A_8_3,A_8_4,A_8_5,A_8_6,A_8_7,A_8_8,A_8_9],[A_9_1,A_9_2,A_9_3,A_9_4,A_9_5,A_9_6,A_9_7,A_9_8,A_9_9]]),Matrix(9, 17, [[B_1_1,B_1_2,B_1_3,B_1_4,B_1_5,B_1_6,B_1_7,B_1_8,B_1_9,B_1_10,B_1_11,B_1_12,B_1_13,B_1_14,B_1_15,B_1_16,B_1_17],[B_2_1,B_2_2,B_2_3,B_2_4,B_2_5,B_2_6,B_2_7,B_2_8,B_2_9,B_2_10,B_2_11,B_2_12,B_2_13,B_2_14,B_2_15,B_2_16,B_2_17],[B_3_1,B_3_2,B_3_3,B_3_4,B_3_5,B_3_6,B_3_7,B_3_8,B_3_9,B_3_10,B_3_11,B_3_12,B_3_13,B_3_14,B_3_15,B_3_16,B_3_17],[B_4_1,B_4_2,B_4_3,B_4_4,B_4_5,B_4_6,B_4_7,B_4_8,B_4_9,B_4_10,B_4_11,B_4_12,B_4_13,B_4_14,B_4_15,B_4_16,B_4_17],[B_5_1,B_5_2,B_5_3,B_5_4,B_5_5,B_5_6,B_5_7,B_5_8,B_5_9,B_5_10,B_5_11,B_5_12,B_5_13,B_5_14,B_5_15,B_5_16,B_5_17],[B_6_1,B_6_2,B_6_3,B_6_4,B_6_5,B_6_6,B_6_7,B_6_8,B_6_9,B_6_10,B_6_11,B_6_12,B_6_13,B_6_14,B_6_15,B_6_16,B_6_17],[B_7_1,B_7_2,B_7_3,B_7_4,B_7_5,B_7_6,B_7_7,B_7_8,B_7_9,B_7_10,B_7_11,B_7_12,B_7_13,B_7_14,B_7_15,B_7_16,B_7_17],[B_8_1,B_8_2,B_8_3,B_8_4,B_8_5,B_8_6,B_8_7,B_8_8,B_8_9,B_8_10,B_8_11,B_8_12,B_8_13,B_8_14,B_8_15,B_8_16,B_8_17],[B_9_1,B_9_2,B_9_3,B_9_4,B_9_5,B_9_6,B_9_7,B_9_8,B_9_9,B_9_10,B_9_11,B_9_12,B_9_13,B_9_14,B_9_15,B_9_16,B_9_17]]),Matrix(17, 9, [[C_1_1,C_1_2,C_1_3,C_1_4,C_1_5,C_1_6,C_1_7,C_1_8,C_1_9],[C_2_1,C_2_2,C_2_3,C_2_4,C_2_5,C_2_6,C_2_7,C_2_8,C_2_9],[C_3_1,C_3_2,C_3_3,C_3_4,C_3_5,C_3_6,C_3_7,C_3_8,C_3_9],[C_4_1,C_4_2,C_4_3,C_4_4,C_4_5,C_4_6,C_4_7,C_4_8,C_4_9],[C_5_1,C_5_2,C_5_3,C_5_4,C_5_5,C_5_6,C_5_7,C_5_8,C_5_9],[C_6_1,C_6_2,C_6_3,C_6_4,C_6_5,C_6_6,C_6_7,C_6_8,C_6_9],[C_7_1,C_7_2,C_7_3,C_7_4,C_7_5,C_7_6,C_7_7,C_7_8,C_7_9],[C_8_1,C_8_2,C_8_3,C_8_4,C_8_5,C_8_6,C_8_7,C_8_8,C_8_9],[C_9_1,C_9_2,C_9_3,C_9_4,C_9_5,C_9_6,C_9_7,C_9_8,C_9_9],[C_10_1,C_10_2,C_10_3,C_10_4,C_10_5,C_10_6,C_10_7,C_10_8,C_10_9],[C_11_1,C_11_2,C_11_3,C_11_4,C_11_5,C_11_6,C_11_7,C_11_8,C_11_9],[C_12_1,C_12_2,C_12_3,C_12_4,C_12_5,C_12_6,C_12_7,C_12_8,C_12_9],[C_13_1,C_13_2,C_13_3,C_13_4,C_13_5,C_13_6,C_13_7,C_13_8,C_13_9],[C_14_1,C_14_2,C_14_3,C_14_4,C_14_5,C_14_6,C_14_7,C_14_8,C_14_9],[C_15_1,C_15_2,C_15_3,C_15_4,C_15_5,C_15_6,C_15_7,C_15_8,C_15_9],[C_16_1,C_16_2,C_16_3,C_16_4,C_16_5,C_16_6,C_16_7,C_16_8,C_16_9],[C_17_1,C_17_2,C_17_3,C_17_4,C_17_5,C_17_6,C_17_7,C_17_8,C_17_9]]))) = Trace(Mul(Matrix(3, 3, [[-A_4_7*l+A_4_4,-A_4_8*l+A_4_5,-A_4_9*l+A_4_6],[-A_5_7*l+A_5_4,-A_5_8*l+A_5_5,-A_5_9*l+A_5_6],[-A_6_7*l+A_6_4,-A_6_8*l+A_6_5,-A_6_9*l+A_6_6]]),Matrix(3, 6, [[-B_4_12*l+B_4_6,-B_4_13*l+B_4_7,-B_4_14*l+B_4_8,-B_4_15*l+B_4_9,-B_4_16*l+B_4_10,-B_4_17*l+B_4_11],[-B_5_12*l+B_5_6,-B_5_13*l+B_5_7,-B_5_14*l+B_5_8,-B_5_15*l+B_5_9,-B_5_16*l+B_5_10,-B_5_17*l+B_5_11],[-B_6_12*l+B_6_6,-B_6_13*l+B_6_7,-B_6_14*l+B_6_8,-B_6_15*l+B_6_9,-B_6_16*l+B_6_10,-B_6_17*l+B_6_11]]),Matrix(6, 3, [[-C_6_7*l+C_6_4,-C_6_8*l+C_6_5,-C_6_9*l+C_6_6],[-C_7_7*l+C_7_4,-C_7_8*l+C_7_5,-C_7_9*l+C_7_6],[-C_8_7*l+C_8_4,-C_8_8*l+C_8_5,-C_8_9*l+C_8_6],[-C_9_7*l+C_9_4,-C_9_8*l+C_9_5,-C_9_9*l+C_9_6],[-C_10_7*l+C_10_4,-C_10_8*l+C_10_5,-C_10_9*l+C_10_6],[-C_11_7*l+C_11_4,-C_11_8*l+C_11_5,-C_11_9*l+C_11_6]])))+Trace(Mul(Matrix(3, 3, [[A_4_4+1/l*A_7_4,A_4_5+1/l*A_7_5,A_4_6+1/l*A_7_6],[A_5_4+1/l*A_8_4,A_5_5+1/l*A_8_5,A_5_6+1/l*A_8_6],[A_6_4+1/l*A_9_4,A_6_5+1/l*A_9_5,A_6_6+1/l*A_9_6]]),Matrix(3, 6, [[B_4_6+1/l*B_7_6,B_4_7+1/l*B_7_7,B_4_8+1/l*B_7_8,B_4_9+1/l*B_7_9,B_4_10+1/l*B_7_10,B_4_11+1/l*B_7_11],[B_5_6+1/l*B_8_6,B_5_7+1/l*B_8_7,B_5_8+1/l*B_8_8,B_5_9+1/l*B_8_9,B_5_10+1/l*B_8_10,B_5_11+1/l*B_8_11],[B_6_6+1/l*B_9_6,B_6_7+1/l*B_9_7,B_6_8+1/l*B_9_8,B_6_9+1/l*B_9_9,B_6_10+1/l*B_9_10,B_6_11+1/l*B_9_11]]),Matrix(6, 3, [[C_6_4+1/l*C_12_4,C_6_5+1/l*C_12_5,C_6_6+1/l*C_12_6],[C_7_4+1/l*C_13_4,C_7_5+1/l*C_13_5,C_7_6+1/l*C_13_6],[C_8_4+1/l*C_14_4,C_8_5+1/l*C_14_5,C_8_6+1/l*C_14_6],[C_9_4+1/l*C_15_4,C_9_5+1/l*C_15_5,C_9_6+1/l*C_15_6],[C_10_4+1/l*C_16_4,C_10_5+1/l*C_16_5,C_10_6+1/l*C_16_6],[C_11_4+1/l*C_17_4,C_11_5+1/l*C_17_5,C_11_6+1/l*C_17_6]])))+Trace(Mul(Matrix(3, 3, [[A_7_7,A_7_8,A_7_9],[A_8_7,A_8_8,A_8_9],[A_9_7,A_9_8,A_9_9]]),Matrix(3, 6, [[B_7_12,B_7_13,B_7_14,B_7_15,B_7_16,B_7_17],[B_8_12,B_8_13,B_8_14,B_8_15,B_8_16,B_8_17],[B_9_12,B_9_13,B_9_14,B_9_15,B_9_16,B_9_17]]),Matrix(6, 3, [[C_12_7,C_12_8,C_12_9],[C_13_7,C_13_8,C_13_9],[C_14_7,C_14_8,C_14_9],[C_15_7,C_15_8,C_15_9],[C_16_7,C_16_8,C_16_9],[C_17_7,C_17_8,C_17_9]])))+Trace(Mul(Matrix(3, 3, [[-A_4_7,-A_4_8,-A_4_9],[-A_5_7,-A_5_8,-A_5_9],[-A_6_7,-A_6_8,-A_6_9]]),Matrix(3, 6, [[B_4_6+1/l*B_7_6-l*B_1_12-B_4_12*l-B_7_12,B_1_1+1/l*B_7_1+B_4_7+1/l*B_7_7-l*B_1_13-B_4_13*l-B_7_13,B_1_2+1/l*B_7_2+B_4_8+1/l*B_7_8-l*B_1_14-B_4_14*l-B_7_14,B_1_3+1/l*B_7_3+B_4_9+1/l*B_7_9-l*B_1_15-B_4_15*l-B_7_15,B_1_4+1/l*B_7_4+B_4_10+1/l*B_7_10-l*B_1_16-B_4_16*l-B_7_16,B_1_5+1/l*B_7_5+B_4_11+1/l*B_7_11-l*B_1_17-B_4_17*l-B_7_17],[B_5_6+1/l*B_8_6-l*B_2_12-B_5_12*l-B_8_12,B_2_1+1/l*B_8_1+B_5_7+1/l*B_8_7-l*B_2_13-B_5_13*l-B_8_13,B_2_2+1/l*B_8_2+B_5_8+1/l*B_8_8-l*B_2_14-B_5_14*l-B_8_14,B_2_3+1/l*B_8_3+B_5_9+1/l*B_8_9-l*B_2_15-B_5_15*l-B_8_15,B_2_4+1/l*B_8_4+B_5_10+1/l*B_8_10-l*B_2_16-B_5_16*l-B_8_16,B_2_5+1/l*B_8_5+B_5_11+1/l*B_8_11-l*B_2_17-B_5_17*l-B_8_17],[B_6_6+1/l*B_9_6-l*B_3_12-B_6_12*l-B_9_12,B_3_1+1/l*B_9_1+B_6_7+1/l*B_9_7-l*B_3_13-B_6_13*l-B_9_13,B_3_2+1/l*B_9_2+B_6_8+1/l*B_9_8-l*B_3_14-B_6_14*l-B_9_14,B_3_3+1/l*B_9_3+B_6_9+1/l*B_9_9-l*B_3_15-B_6_15*l-B_9_15,B_3_4+1/l*B_9_4+B_6_10+1/l*B_9_10-l*B_3_16-B_6_16*l-B_9_16,B_3_5+1/l*B_9_5+B_6_11+1/l*B_9_11-l*B_3_17-B_6_17*l-B_9_17]]),Matrix(6, 3, [[C_12_4,C_12_5,C_12_6],[C_13_4,C_13_5,C_13_6],[C_14_4,C_14_5,C_14_6],[C_15_4,C_15_5,C_15_6],[C_16_4,C_16_5,C_16_6],[C_17_4,C_17_5,C_17_6]])))+Trace(Mul(Matrix(3, 3, [[-A_1_1-1/l*A_7_1-A_4_4-1/l*A_7_4+l*A_1_7+A_4_7*l+A_7_7,-A_1_2-1/l*A_7_2-A_4_5-1/l*A_7_5+l*A_1_8+A_4_8*l+A_7_8,-A_1_3-1/l*A_7_3-A_4_6-1/l*A_7_6+l*A_1_9+A_4_9*l+A_7_9],[-A_2_1-1/l*A_8_1-A_5_4-1/l*A_8_4+l*A_2_7+A_5_7*l+A_8_7,-A_2_2-1/l*A_8_2-A_5_5-1/l*A_8_5+l*A_2_8+A_5_8*l+A_8_8,-A_2_3-1/l*A_8_3-A_5_6-1/l*A_8_6+l*A_2_9+A_5_9*l+A_8_9],[-A_3_1-1/l*A_9_1-A_6_4-1/l*A_9_4+l*A_3_7+A_6_7*l+A_9_7,-A_3_2-1/l*A_9_2-A_6_5-1/l*A_9_5+l*A_3_8+A_6_8*l+A_9_8,-A_3_3-1/l*A_9_3-A_6_6-1/l*A_9_6+l*A_3_9+A_6_9*l+A_9_9]]),Matrix(3, 6, [[B_7_6,B_7_7,B_7_8,B_7_9,B_7_10,B_7_11],[B_8_6,B_8_7,B_8_8,B_8_9,B_8_10,B_8_11],[B_9_6,B_9_7,B_9_8,B_9_9,B_9_10,B_9_11]]),Matrix(6, 3, [[C_6_7,C_6_8,C_6_9],[C_7_7,C_7_8,C_7_9],[C_8_7,C_8_8,C_8_9],[C_9_7,C_9_8,C_9_9],[C_10_7,C_10_8,C_10_9],[C_11_7,C_11_8,C_11_9]])))+Trace(Mul(Matrix(3, 3, [[A_7_4,A_7_5,A_7_6],[A_8_4,A_8_5,A_8_6],[A_9_4,A_9_5,A_9_6]]),Matrix(3, 6, [[B_4_12,B_4_13,B_4_14,B_4_15,B_4_16,B_4_17],[B_5_12,B_5_13,B_5_14,B_5_15,B_5_16,B_5_17],[B_6_12,B_6_13,B_6_14,B_6_15,B_6_16,B_6_17]]),Matrix(6, 3, [[-1/l*C_12_1-C_6_4-1/l*C_12_4+C_6_7*l+C_12_7,-1/l*C_12_2-C_6_5-1/l*C_12_5+C_6_8*l+C_12_8,-1/l*C_12_3-C_6_6-1/l*C_12_6+C_6_9*l+C_12_9],[-C_1_1-1/l*C_13_1-C_7_4-1/l*C_13_4+l*C_1_7+C_7_7*l+C_13_7,-C_1_2-1/l*C_13_2-C_7_5-1/l*C_13_5+l*C_1_8+C_7_8*l+C_13_8,-C_1_3-1/l*C_13_3-C_7_6-1/l*C_13_6+l*C_1_9+C_7_9*l+C_13_9],[-C_2_1-1/l*C_14_1-C_8_4-1/l*C_14_4+l*C_2_7+C_8_7*l+C_14_7,-C_2_2-1/l*C_14_2-C_8_5-1/l*C_14_5+l*C_2_8+C_8_8*l+C_14_8,-C_2_3-1/l*C_14_3-C_8_6-1/l*C_14_6+l*C_2_9+C_8_9*l+C_14_9],[-C_3_1-1/l*C_15_1-C_9_4-1/l*C_15_4+l*C_3_7+C_9_7*l+C_15_7,-C_3_2-1/l*C_15_2-C_9_5-1/l*C_15_5+l*C_3_8+C_9_8*l+C_15_8,-C_3_3-1/l*C_15_3-C_9_6-1/l*C_15_6+l*C_3_9+C_9_9*l+C_15_9],[-C_4_1-1/l*C_16_1-C_10_4-1/l*C_16_4+l*C_4_7+C_10_7*l+C_16_7,-C_4_2-1/l*C_16_2-C_10_5-1/l*C_16_5+l*C_4_8+C_10_8*l+C_16_8,-C_4_3-1/l*C_16_3-C_10_6-1/l*C_16_6+l*C_4_9+C_10_9*l+C_16_9],[-C_5_1-1/l*C_17_1-C_11_4-1/l*C_17_4+l*C_5_7+C_11_7*l+C_17_7,-C_5_2-1/l*C_17_2-C_11_5-1/l*C_17_5+l*C_5_8+C_11_8*l+C_17_8,-C_5_3-1/l*C_17_3-C_11_6-1/l*C_17_6+l*C_5_9+C_11_9*l+C_17_9]])))+Trace(Mul(Matrix(3, 3, [[-A_4_4-1/l*A_7_4+A_4_7*l,-A_4_5-1/l*A_7_5+A_4_8*l,-A_4_6-1/l*A_7_6+A_4_9*l],[-A_5_4-1/l*A_8_4+A_5_7*l,-A_5_5-1/l*A_8_5+A_5_8*l,-A_5_6-1/l*A_8_6+A_5_9*l],[-A_6_4-1/l*A_9_4+A_6_7*l,-A_6_5-1/l*A_9_5+A_6_8*l,-A_6_6-1/l*A_9_6+A_6_9*l]]),Matrix(3, 6, [[B_4_6+1/l*B_7_6-B_4_12*l,B_4_7+1/l*B_7_7-B_4_13*l,B_4_8+1/l*B_7_8-B_4_14*l,B_4_9+1/l*B_7_9-B_4_15*l,B_4_10+1/l*B_7_10-B_4_16*l,B_4_11+1/l*B_7_11-B_4_17*l],[B_5_6+1/l*B_8_6-B_5_12*l,B_5_7+1/l*B_8_7-B_5_13*l,B_5_8+1/l*B_8_8-B_5_14*l,B_5_9+1/l*B_8_9-B_5_15*l,B_5_10+1/l*B_8_10-B_5_16*l,B_5_11+1/l*B_8_11-B_5_17*l],[B_6_6+1/l*B_9_6-B_6_12*l,B_6_7+1/l*B_9_7-B_6_13*l,B_6_8+1/l*B_9_8-B_6_14*l,B_6_9+1/l*B_9_9-B_6_15*l,B_6_10+1/l*B_9_10-B_6_16*l,B_6_11+1/l*B_9_11-B_6_17*l]]),Matrix(6, 3, [[C_6_4+1/l*C_12_4-C_6_7*l,C_6_5+1/l*C_12_5-C_6_8*l,C_6_6+1/l*C_12_6-C_6_9*l],[C_7_4+1/l*C_13_4-C_7_7*l,C_7_5+1/l*C_13_5-C_7_8*l,C_7_6+1/l*C_13_6-C_7_9*l],[C_8_4+1/l*C_14_4-C_8_7*l,C_8_5+1/l*C_14_5-C_8_8*l,C_8_6+1/l*C_14_6-C_8_9*l],[C_9_4+1/l*C_15_4-C_9_7*l,C_9_5+1/l*C_15_5-C_9_8*l,C_9_6+1/l*C_15_6-C_9_9*l],[C_10_4+1/l*C_16_4-C_10_7*l,C_10_5+1/l*C_16_5-C_10_8*l,C_10_6+1/l*C_16_6-C_10_9*l],[C_11_4+1/l*C_17_4-C_11_7*l,C_11_5+1/l*C_17_5-C_11_8*l,C_11_6+1/l*C_17_6-C_11_9*l]])))+Trace(Mul(Matrix(3, 3, [[-A_1_7*l+A_1_1,-A_1_8*l+A_1_2,-A_1_9*l+A_1_3],[-A_2_7*l+A_2_1,-A_2_8*l+A_2_2,-A_2_9*l+A_2_3],[-A_3_7*l+A_3_1,-A_3_8*l+A_3_2,-A_3_9*l+A_3_3]]),Matrix(3, 6, [[-B_1_12*l+B_1_6,-B_1_13*l+B_1_7,-B_1_14*l+B_1_8,-B_1_15*l+B_1_9,-B_1_16*l+B_1_10,-B_1_17*l+B_1_11],[-B_2_12*l+B_2_6,-B_2_13*l+B_2_7,-B_2_14*l+B_2_8,-B_2_15*l+B_2_9,-B_2_16*l+B_2_10,-B_2_17*l+B_2_11],[-B_3_12*l+B_3_6,-B_3_13*l+B_3_7,-B_3_14*l+B_3_8,-B_3_15*l+B_3_9,-B_3_16*l+B_3_10,-B_3_17*l+B_3_11]]),Matrix(6, 3, [[-C_6_7*l+C_6_1,-C_6_8*l+C_6_2,-C_6_9*l+C_6_3],[-C_7_7*l+C_7_1,-C_7_8*l+C_7_2,-C_7_9*l+C_7_3],[-C_8_7*l+C_8_1,-C_8_8*l+C_8_2,-C_8_9*l+C_8_3],[-C_9_7*l+C_9_1,-C_9_8*l+C_9_2,-C_9_9*l+C_9_3],[-C_10_7*l+C_10_1,-C_10_8*l+C_10_2,-C_10_9*l+C_10_3],[-C_11_7*l+C_11_1,-C_11_8*l+C_11_2,-C_11_9*l+C_11_3]])))+Trace(Mul(Matrix(3, 3, [[A_1_1+1/l*A_7_1,A_1_2+1/l*A_7_2,A_1_3+1/l*A_7_3],[A_2_1+1/l*A_8_1,A_2_2+1/l*A_8_2,A_2_3+1/l*A_8_3],[A_3_1+1/l*A_9_1,A_3_2+1/l*A_9_2,A_3_3+1/l*A_9_3]]),Matrix(3, 6, [[B_1_6+1/l*B_7_6,B_1_7+1/l*B_7_7,B_1_8+1/l*B_7_8,B_1_9+1/l*B_7_9,B_1_10+1/l*B_7_10,B_1_11+1/l*B_7_11],[B_2_6+1/l*B_8_6,B_2_7+1/l*B_8_7,B_2_8+1/l*B_8_8,B_2_9+1/l*B_8_9,B_2_10+1/l*B_8_10,B_2_11+1/l*B_8_11],[B_3_6+1/l*B_9_6,B_3_7+1/l*B_9_7,B_3_8+1/l*B_9_8,B_3_9+1/l*B_9_9,B_3_10+1/l*B_9_10,B_3_11+1/l*B_9_11]]),Matrix(6, 3, [[C_6_1+1/l*C_12_1,C_6_2+1/l*C_12_2,C_6_3+1/l*C_12_3],[C_7_1+1/l*C_13_1,C_7_2+1/l*C_13_2,C_7_3+1/l*C_13_3],[C_8_1+1/l*C_14_1,C_8_2+1/l*C_14_2,C_8_3+1/l*C_14_3],[C_9_1+1/l*C_15_1,C_9_2+1/l*C_15_2,C_9_3+1/l*C_15_3],[C_10_1+1/l*C_16_1,C_10_2+1/l*C_16_2,C_10_3+1/l*C_16_3],[C_11_1+1/l*C_17_1,C_11_2+1/l*C_17_2,C_11_3+1/l*C_17_3]])))+Trace(Mul(Matrix(3, 3, [[A_1_7,A_1_8,A_1_9],[A_2_7,A_2_8,A_2_9],[A_3_7,A_3_8,A_3_9]]),Matrix(3, 6, [[-B_1_6-1/l*B_7_6+l*B_1_12+B_4_12*l+B_7_12,-B_4_1-1/l*B_7_1-B_1_7-1/l*B_7_7+l*B_1_13+B_4_13*l+B_7_13,-B_4_2-1/l*B_7_2-B_1_8-1/l*B_7_8+l*B_1_14+B_4_14*l+B_7_14,-B_4_3-1/l*B_7_3-B_1_9-1/l*B_7_9+l*B_1_15+B_4_15*l+B_7_15,-B_4_4-1/l*B_7_4-B_1_10-1/l*B_7_10+l*B_1_16+B_4_16*l+B_7_16,-B_4_5-1/l*B_7_5-B_1_11-1/l*B_7_11+l*B_1_17+B_4_17*l+B_7_17],[-B_2_6-1/l*B_8_6+l*B_2_12+B_5_12*l+B_8_12,-B_5_1-1/l*B_8_1-B_2_7-1/l*B_8_7+l*B_2_13+B_5_13*l+B_8_13,-B_5_2-1/l*B_8_2-B_2_8-1/l*B_8_8+l*B_2_14+B_5_14*l+B_8_14,-B_5_3-1/l*B_8_3-B_2_9-1/l*B_8_9+l*B_2_15+B_5_15*l+B_8_15,-B_5_4-1/l*B_8_4-B_2_10-1/l*B_8_10+l*B_2_16+B_5_16*l+B_8_16,-B_5_5-1/l*B_8_5-B_2_11-1/l*B_8_11+l*B_2_17+B_5_17*l+B_8_17],[-B_3_6-1/l*B_9_6+l*B_3_12+B_6_12*l+B_9_12,-B_6_1-1/l*B_9_1-B_3_7-1/l*B_9_7+l*B_3_13+B_6_13*l+B_9_13,-B_6_2-1/l*B_9_2-B_3_8-1/l*B_9_8+l*B_3_14+B_6_14*l+B_9_14,-B_6_3-1/l*B_9_3-B_3_9-1/l*B_9_9+l*B_3_15+B_6_15*l+B_9_15,-B_6_4-1/l*B_9_4-B_3_10-1/l*B_9_10+l*B_3_16+B_6_16*l+B_9_16,-B_6_5-1/l*B_9_5-B_3_11-1/l*B_9_11+l*B_3_17+B_6_17*l+B_9_17]]),Matrix(6, 3, [[C_12_1,C_12_2,C_12_3],[C_13_1,C_13_2,C_13_3],[C_14_1,C_14_2,C_14_3],[C_15_1,C_15_2,C_15_3],[C_16_1,C_16_2,C_16_3],[C_17_1,C_17_2,C_17_3]])))+Trace(Mul(Matrix(3, 3, [[-A_7_1,-A_7_2,-A_7_3],[-A_8_1,-A_8_2,-A_8_3],[-A_9_1,-A_9_2,-A_9_3]]),Matrix(3, 6, [[B_1_12,B_1_13,B_1_14,B_1_15,B_1_16,B_1_17],[B_2_12,B_2_13,B_2_14,B_2_15,B_2_16,B_2_17],[B_3_12,B_3_13,B_3_14,B_3_15,B_3_16,B_3_17]]),Matrix(6, 3, [[C_6_1+1/l*C_12_1+1/l*C_12_4-C_6_7*l-C_12_7,C_6_2+1/l*C_12_2+1/l*C_12_5-C_6_8*l-C_12_8,C_6_3+1/l*C_12_3+1/l*C_12_6-C_6_9*l-C_12_9],[C_7_1+1/l*C_13_1+C_1_4+1/l*C_13_4-l*C_1_7-C_7_7*l-C_13_7,C_7_2+1/l*C_13_2+C_1_5+1/l*C_13_5-l*C_1_8-C_7_8*l-C_13_8,C_7_3+1/l*C_13_3+C_1_6+1/l*C_13_6-l*C_1_9-C_7_9*l-C_13_9],[C_8_1+1/l*C_14_1+C_2_4+1/l*C_14_4-l*C_2_7-C_8_7*l-C_14_7,C_8_2+1/l*C_14_2+C_2_5+1/l*C_14_5-l*C_2_8-C_8_8*l-C_14_8,C_8_3+1/l*C_14_3+C_2_6+1/l*C_14_6-l*C_2_9-C_8_9*l-C_14_9],[C_9_1+1/l*C_15_1+C_3_4+1/l*C_15_4-l*C_3_7-C_9_7*l-C_15_7,C_9_2+1/l*C_15_2+C_3_5+1/l*C_15_5-l*C_3_8-C_9_8*l-C_15_8,C_9_3+1/l*C_15_3+C_3_6+1/l*C_15_6-l*C_3_9-C_9_9*l-C_15_9],[C_10_1+1/l*C_16_1+C_4_4+1/l*C_16_4-l*C_4_7-C_10_7*l-C_16_7,C_10_2+1/l*C_16_2+C_4_5+1/l*C_16_5-l*C_4_8-C_10_8*l-C_16_8,C_10_3+1/l*C_16_3+C_4_6+1/l*C_16_6-l*C_4_9-C_10_9*l-C_16_9],[C_11_1+1/l*C_17_1+C_5_4+1/l*C_17_4-l*C_5_7-C_11_7*l-C_17_7,C_11_2+1/l*C_17_2+C_5_5+1/l*C_17_5-l*C_5_8-C_11_8*l-C_17_8,C_11_3+1/l*C_17_3+C_5_6+1/l*C_17_6-l*C_5_9-C_11_9*l-C_17_9]])))+Trace(Mul(Matrix(3, 3, [[-A_1_1-1/l*A_7_1+l*A_1_7,-A_1_2-1/l*A_7_2+l*A_1_8,-A_1_3-1/l*A_7_3+l*A_1_9],[-A_2_1-1/l*A_8_1+l*A_2_7,-A_2_2-1/l*A_8_2+l*A_2_8,-A_2_3-1/l*A_8_3+l*A_2_9],[-A_3_1-1/l*A_9_1+l*A_3_7,-A_3_2-1/l*A_9_2+l*A_3_8,-A_3_3-1/l*A_9_3+l*A_3_9]]),Matrix(3, 6, [[B_1_6+1/l*B_7_6-l*B_1_12,B_1_7+1/l*B_7_7-l*B_1_13,B_1_8+1/l*B_7_8-l*B_1_14,B_1_9+1/l*B_7_9-l*B_1_15,B_1_10+1/l*B_7_10-l*B_1_16,B_1_11+1/l*B_7_11-l*B_1_17],[B_2_6+1/l*B_8_6-l*B_2_12,B_2_7+1/l*B_8_7-l*B_2_13,B_2_8+1/l*B_8_8-l*B_2_14,B_2_9+1/l*B_8_9-l*B_2_15,B_2_10+1/l*B_8_10-l*B_2_16,B_2_11+1/l*B_8_11-l*B_2_17],[B_3_6+1/l*B_9_6-l*B_3_12,B_3_7+1/l*B_9_7-l*B_3_13,B_3_8+1/l*B_9_8-l*B_3_14,B_3_9+1/l*B_9_9-l*B_3_15,B_3_10+1/l*B_9_10-l*B_3_16,B_3_11+1/l*B_9_11-l*B_3_17]]),Matrix(6, 3, [[C_6_1+1/l*C_12_1-C_6_7*l,C_6_2+1/l*C_12_2-C_6_8*l,C_6_3+1/l*C_12_3-C_6_9*l],[C_7_1+1/l*C_13_1-C_7_7*l,C_7_2+1/l*C_13_2-C_7_8*l,C_7_3+1/l*C_13_3-C_7_9*l],[C_8_1+1/l*C_14_1-C_8_7*l,C_8_2+1/l*C_14_2-C_8_8*l,C_8_3+1/l*C_14_3-C_8_9*l],[C_9_1+1/l*C_15_1-C_9_7*l,C_9_2+1/l*C_15_2-C_9_8*l,C_9_3+1/l*C_15_3-C_9_9*l],[C_10_1+1/l*C_16_1-C_10_7*l,C_10_2+1/l*C_16_2-C_10_8*l,C_10_3+1/l*C_16_3-C_10_9*l],[C_11_1+1/l*C_17_1-C_11_7*l,C_11_2+1/l*C_17_2-C_11_8*l,C_11_3+1/l*C_17_3-C_11_9*l]])))+Trace(Mul(Matrix(3, 3, [[-A_4_7*l+A_4_1,-A_4_8*l+A_4_2,-A_4_9*l+A_4_3],[-A_5_7*l+A_5_1,-A_5_8*l+A_5_2,-A_5_9*l+A_5_3],[-A_6_7*l+A_6_1,-A_6_8*l+A_6_2,-A_6_9*l+A_6_3]]),Matrix(3, 5, [[-B_1_13*l+B_1_1,-B_1_14*l+B_1_2,-B_1_15*l+B_1_3,-B_1_16*l+B_1_4,-B_1_17*l+B_1_5],[-B_2_13*l+B_2_1,-B_2_14*l+B_2_2,-B_2_15*l+B_2_3,-B_2_16*l+B_2_4,-B_2_17*l+B_2_5],[-B_3_13*l+B_3_1,-B_3_14*l+B_3_2,-B_3_15*l+B_3_3,-B_3_16*l+B_3_4,-B_3_17*l+B_3_5]]),Matrix(5, 3, [[-C_1_7*l+C_1_4,-C_1_8*l+C_1_5,-C_1_9*l+C_1_6],[-C_2_7*l+C_2_4,-C_2_8*l+C_2_5,-C_2_9*l+C_2_6],[-C_3_7*l+C_3_4,-C_3_8*l+C_3_5,-C_3_9*l+C_3_6],[-C_4_7*l+C_4_4,-C_4_8*l+C_4_5,-C_4_9*l+C_4_6],[-C_5_7*l+C_5_4,-C_5_8*l+C_5_5,-C_5_9*l+C_5_6]])))+Trace(Mul(Matrix(3, 3, [[A_4_1+1/l*A_7_1,A_4_2+1/l*A_7_2,A_4_3+1/l*A_7_3],[A_5_1+1/l*A_8_1,A_5_2+1/l*A_8_2,A_5_3+1/l*A_8_3],[A_6_1+1/l*A_9_1,A_6_2+1/l*A_9_2,A_6_3+1/l*A_9_3]]),Matrix(3, 5, [[B_1_1+1/l*B_7_1,B_1_2+1/l*B_7_2,B_1_3+1/l*B_7_3,B_1_4+1/l*B_7_4,B_1_5+1/l*B_7_5],[B_2_1+1/l*B_8_1,B_2_2+1/l*B_8_2,B_2_3+1/l*B_8_3,B_2_4+1/l*B_8_4,B_2_5+1/l*B_8_5],[B_3_1+1/l*B_9_1,B_3_2+1/l*B_9_2,B_3_3+1/l*B_9_3,B_3_4+1/l*B_9_4,B_3_5+1/l*B_9_5]]),Matrix(5, 3, [[C_1_4+1/l*C_13_4,C_1_5+1/l*C_13_5,C_1_6+1/l*C_13_6],[C_2_4+1/l*C_14_4,C_2_5+1/l*C_14_5,C_2_6+1/l*C_14_6],[C_3_4+1/l*C_15_4,C_3_5+1/l*C_15_5,C_3_6+1/l*C_15_6],[C_4_4+1/l*C_16_4,C_4_5+1/l*C_16_5,C_4_6+1/l*C_16_6],[C_5_4+1/l*C_17_4,C_5_5+1/l*C_17_5,C_5_6+1/l*C_17_6]])))+Trace(Mul(Matrix(3, 3, [[-A_4_1-1/l*A_7_1-A_1_4-1/l*A_7_4+l*A_1_7+A_4_7*l+A_7_7,-A_4_2-1/l*A_7_2-A_1_5-1/l*A_7_5+l*A_1_8+A_4_8*l+A_7_8,-A_4_3-1/l*A_7_3-A_1_6-1/l*A_7_6+l*A_1_9+A_4_9*l+A_7_9],[-A_5_1-1/l*A_8_1-A_2_4-1/l*A_8_4+l*A_2_7+A_5_7*l+A_8_7,-A_5_2-1/l*A_8_2-A_2_5-1/l*A_8_5+l*A_2_8+A_5_8*l+A_8_8,-A_5_3-1/l*A_8_3-A_2_6-1/l*A_8_6+l*A_2_9+A_5_9*l+A_8_9],[-A_6_1-1/l*A_9_1-A_3_4-1/l*A_9_4+l*A_3_7+A_6_7*l+A_9_7,-A_6_2-1/l*A_9_2-A_3_5-1/l*A_9_5+l*A_3_8+A_6_8*l+A_9_8,-A_6_3-1/l*A_9_3-A_3_6-1/l*A_9_6+l*A_3_9+A_6_9*l+A_9_9]]),Matrix(3, 5, [[B_7_1,B_7_2,B_7_3,B_7_4,B_7_5],[B_8_1,B_8_2,B_8_3,B_8_4,B_8_5],[B_9_1,B_9_2,B_9_3,B_9_4,B_9_5]]),Matrix(5, 3, [[C_1_7,C_1_8,C_1_9],[C_2_7,C_2_8,C_2_9],[C_3_7,C_3_8,C_3_9],[C_4_7,C_4_8,C_4_9],[C_5_7,C_5_8,C_5_9]])))+Trace(Mul(Matrix(3, 3, [[-A_4_1-1/l*A_7_1+A_4_7*l,-A_4_2-1/l*A_7_2+A_4_8*l,-A_4_3-1/l*A_7_3+A_4_9*l],[-A_5_1-1/l*A_8_1+A_5_7*l,-A_5_2-1/l*A_8_2+A_5_8*l,-A_5_3-1/l*A_8_3+A_5_9*l],[-A_6_1-1/l*A_9_1+A_6_7*l,-A_6_2-1/l*A_9_2+A_6_8*l,-A_6_3-1/l*A_9_3+A_6_9*l]]),Matrix(3, 6, [[-l*B_1_12,B_1_1+1/l*B_7_1-l*B_1_13,B_1_2+1/l*B_7_2-l*B_1_14,B_1_3+1/l*B_7_3-l*B_1_15,B_1_4+1/l*B_7_4-l*B_1_16,B_1_5+1/l*B_7_5-l*B_1_17],[-l*B_2_12,B_2_1+1/l*B_8_1-l*B_2_13,B_2_2+1/l*B_8_2-l*B_2_14,B_2_3+1/l*B_8_3-l*B_2_15,B_2_4+1/l*B_8_4-l*B_2_16,B_2_5+1/l*B_8_5-l*B_2_17],[-l*B_3_12,B_3_1+1/l*B_9_1-l*B_3_13,B_3_2+1/l*B_9_2-l*B_3_14,B_3_3+1/l*B_9_3-l*B_3_15,B_3_4+1/l*B_9_4-l*B_3_16,B_3_5+1/l*B_9_5-l*B_3_17]]),Matrix(6, 3, [[1/l*C_12_4,1/l*C_12_5,1/l*C_12_6],[C_1_4+1/l*C_13_4-l*C_1_7,C_1_5+1/l*C_13_5-l*C_1_8,C_1_6+1/l*C_13_6-l*C_1_9],[C_2_4+1/l*C_14_4-l*C_2_7,C_2_5+1/l*C_14_5-l*C_2_8,C_2_6+1/l*C_14_6-l*C_2_9],[C_3_4+1/l*C_15_4-l*C_3_7,C_3_5+1/l*C_15_5-l*C_3_8,C_3_6+1/l*C_15_6-l*C_3_9],[C_4_4+1/l*C_16_4-l*C_4_7,C_4_5+1/l*C_16_5-l*C_4_8,C_4_6+1/l*C_16_6-l*C_4_9],[C_5_4+1/l*C_17_4-l*C_5_7,C_5_5+1/l*C_17_5-l*C_5_8,C_5_6+1/l*C_17_6-l*C_5_9]])))+Trace(Mul(Matrix(3, 3, [[-A_1_4-1/l*A_7_4+l*A_1_7,-A_1_5-1/l*A_7_5+l*A_1_8,-A_1_6-1/l*A_7_6+l*A_1_9],[-A_2_4-1/l*A_8_4+l*A_2_7,-A_2_5-1/l*A_8_5+l*A_2_8,-A_2_6-1/l*A_8_6+l*A_2_9],[-A_3_4-1/l*A_9_4+l*A_3_7,-A_3_5-1/l*A_9_5+l*A_3_8,-A_3_6-1/l*A_9_6+l*A_3_9]]),Matrix(3, 6, [[-B_4_12*l,B_4_1+1/l*B_7_1-B_4_13*l,B_4_2+1/l*B_7_2-B_4_14*l,B_4_3+1/l*B_7_3-B_4_15*l,B_4_4+1/l*B_7_4-B_4_16*l,B_4_5+1/l*B_7_5-B_4_17*l],[-B_5_12*l,B_5_1+1/l*B_8_1-B_5_13*l,B_5_2+1/l*B_8_2-B_5_14*l,B_5_3+1/l*B_8_3-B_5_15*l,B_5_4+1/l*B_8_4-B_5_16*l,B_5_5+1/l*B_8_5-B_5_17*l],[-B_6_12*l,B_6_1+1/l*B_9_1-B_6_13*l,B_6_2+1/l*B_9_2-B_6_14*l,B_6_3+1/l*B_9_3-B_6_15*l,B_6_4+1/l*B_9_4-B_6_16*l,B_6_5+1/l*B_9_5-B_6_17*l]]),Matrix(6, 3, [[1/l*C_12_1,1/l*C_12_2,1/l*C_12_3],[C_1_1+1/l*C_13_1-l*C_1_7,C_1_2+1/l*C_13_2-l*C_1_8,C_1_3+1/l*C_13_3-l*C_1_9],[C_2_1+1/l*C_14_1-l*C_2_7,C_2_2+1/l*C_14_2-l*C_2_8,C_2_3+1/l*C_14_3-l*C_2_9],[C_3_1+1/l*C_15_1-l*C_3_7,C_3_2+1/l*C_15_2-l*C_3_8,C_3_3+1/l*C_15_3-l*C_3_9],[C_4_1+1/l*C_16_1-l*C_4_7,C_4_2+1/l*C_16_2-l*C_4_8,C_4_3+1/l*C_16_3-l*C_4_9],[C_5_1+1/l*C_17_1-l*C_5_7,C_5_2+1/l*C_17_2-l*C_5_8,C_5_3+1/l*C_17_3-l*C_5_9]])))+Trace(Mul(Matrix(3, 3, [[-A_1_7*l+A_1_4,-A_1_8*l+A_1_5,-A_1_9*l+A_1_6],[-A_2_7*l+A_2_4,-A_2_8*l+A_2_5,-A_2_9*l+A_2_6],[-A_3_7*l+A_3_4,-A_3_8*l+A_3_5,-A_3_9*l+A_3_6]]),Matrix(3, 5, [[-B_4_13*l+B_4_1,-B_4_14*l+B_4_2,-B_4_15*l+B_4_3,-B_4_16*l+B_4_4,-B_4_17*l+B_4_5],[-B_5_13*l+B_5_1,-B_5_14*l+B_5_2,-B_5_15*l+B_5_3,-B_5_16*l+B_5_4,-B_5_17*l+B_5_5],[-B_6_13*l+B_6_1,-B_6_14*l+B_6_2,-B_6_15*l+B_6_3,-B_6_16*l+B_6_4,-B_6_17*l+B_6_5]]),Matrix(5, 3, [[-C_1_7*l+C_1_1,-C_1_8*l+C_1_2,-C_1_9*l+C_1_3],[-C_2_7*l+C_2_1,-C_2_8*l+C_2_2,-C_2_9*l+C_2_3],[-C_3_7*l+C_3_1,-C_3_8*l+C_3_2,-C_3_9*l+C_3_3],[-C_4_7*l+C_4_1,-C_4_8*l+C_4_2,-C_4_9*l+C_4_3],[-C_5_7*l+C_5_1,-C_5_8*l+C_5_2,-C_5_9*l+C_5_3]])))+Trace(Mul(Matrix(3, 3, [[A_1_4+1/l*A_7_4,A_1_5+1/l*A_7_5,A_1_6+1/l*A_7_6],[A_2_4+1/l*A_8_4,A_2_5+1/l*A_8_5,A_2_6+1/l*A_8_6],[A_3_4+1/l*A_9_4,A_3_5+1/l*A_9_5,A_3_6+1/l*A_9_6]]),Matrix(3, 5, [[B_4_1+1/l*B_7_1,B_4_2+1/l*B_7_2,B_4_3+1/l*B_7_3,B_4_4+1/l*B_7_4,B_4_5+1/l*B_7_5],[B_5_1+1/l*B_8_1,B_5_2+1/l*B_8_2,B_5_3+1/l*B_8_3,B_5_4+1/l*B_8_4,B_5_5+1/l*B_8_5],[B_6_1+1/l*B_9_1,B_6_2+1/l*B_9_2,B_6_3+1/l*B_9_3,B_6_4+1/l*B_9_4,B_6_5+1/l*B_9_5]]),Matrix(5, 3, [[C_1_1+1/l*C_13_1,C_1_2+1/l*C_13_2,C_1_3+1/l*C_13_3],[C_2_1+1/l*C_14_1,C_2_2+1/l*C_14_2,C_2_3+1/l*C_14_3],[C_3_1+1/l*C_15_1,C_3_2+1/l*C_15_2,C_3_3+1/l*C_15_3],[C_4_1+1/l*C_16_1,C_4_2+1/l*C_16_2,C_4_3+1/l*C_16_3],[C_5_1+1/l*C_17_1,C_5_2+1/l*C_17_2,C_5_3+1/l*C_17_3]])))+Trace(Mul(Matrix(3, 3, [[A_4_4,A_4_5,A_4_6],[A_5_4,A_5_5,A_5_6],[A_6_4,A_6_5,A_6_6]]),Matrix(3, 5, [[B_4_1,B_4_2,B_4_3,B_4_4,B_4_5],[B_5_1,B_5_2,B_5_3,B_5_4,B_5_5],[B_6_1,B_6_2,B_6_3,B_6_4,B_6_5]]),Matrix(5, 3, [[C_1_4,C_1_5,C_1_6],[C_2_4,C_2_5,C_2_6],[C_3_4,C_3_5,C_3_6],[C_4_4,C_4_5,C_4_6],[C_5_4,C_5_5,C_5_6]])))+Trace(Mul(Matrix(3, 3, [[A_4_1,A_4_2,A_4_3],[A_5_1,A_5_2,A_5_3],[A_6_1,A_6_2,A_6_3]]),Matrix(3, 6, [[B_1_6,B_1_7,B_1_8,B_1_9,B_1_10,B_1_11],[B_2_6,B_2_7,B_2_8,B_2_9,B_2_10,B_2_11],[B_3_6,B_3_7,B_3_8,B_3_9,B_3_10,B_3_11]]),Matrix(6, 3, [[C_6_4,C_6_5,C_6_6],[C_7_4,C_7_5,C_7_6],[C_8_4,C_8_5,C_8_6],[C_9_4,C_9_5,C_9_6],[C_10_4,C_10_5,C_10_6],[C_11_4,C_11_5,C_11_6]])))+Trace(Mul(Matrix(3, 3, [[A_1_1,A_1_2,A_1_3],[A_2_1,A_2_2,A_2_3],[A_3_1,A_3_2,A_3_3]]),Matrix(3, 5, [[B_1_1,B_1_2,B_1_3,B_1_4,B_1_5],[B_2_1,B_2_2,B_2_3,B_2_4,B_2_5],[B_3_1,B_3_2,B_3_3,B_3_4,B_3_5]]),Matrix(5, 3, [[C_1_1,C_1_2,C_1_3],[C_2_1,C_2_2,C_2_3],[C_3_1,C_3_2,C_3_3],[C_4_1,C_4_2,C_4_3],[C_5_1,C_5_2,C_5_3]])))+Trace(Mul(Matrix(3, 3, [[A_1_4,A_1_5,A_1_6],[A_2_4,A_2_5,A_2_6],[A_3_4,A_3_5,A_3_6]]),Matrix(3, 6, [[B_4_6,B_4_7,B_4_8,B_4_9,B_4_10,B_4_11],[B_5_6,B_5_7,B_5_8,B_5_9,B_5_10,B_5_11],[B_6_6,B_6_7,B_6_8,B_6_9,B_6_10,B_6_11]]),Matrix(6, 3, [[C_6_1,C_6_2,C_6_3],[C_7_1,C_7_2,C_7_3],[C_8_1,C_8_2,C_8_3],[C_9_1,C_9_2,C_9_3],[C_10_1,C_10_2,C_10_3],[C_11_1,C_11_2,C_11_3]])))

N.B.: for any matrices A, B and C such that the expression Tr(Mul(A,B,C)) is defined, one can construct several trilinear homogeneous polynomials P(A,B,C) such that P(A,B,C)=Tr(Mul(A,B,C)) (P(A,B,C) variables are A,B and C's coefficients). Each trilinear P expression encodes a matrix multiplication algorithm: the coefficient in C_i_j of P(A,B,C) is the (i,j)-th entry of the matrix product Mul(A,B)=Transpose(C).

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table