Description of fast matrix multiplication algorithm: ⟨9×30×31:4910⟩

Algorithm type

64X2Y12Z3+32X2Y6Z9+544X4Y6Z6+96XY12Z3+48XY6Z9+32X6Y6Z3+32X2Y9Z3+880X2Y6Z6+160X2Y3Z9+64X4Y6Z3+48XY9Z3+96XY6Z6+240XY3Z9+160X6Y3Z3+48X3Y6Z3+512X2Y6Z3+32X2Y3Z6+32X4Y3Z3+624XY6Z3+48XY3Z6+240X3Y3Z3+272X2Y3Z3+336XY3Z3+270XYZ64X2Y12Z332X2Y6Z9544X4Y6Z696XY12Z348XY6Z932X6Y6Z332X2Y9Z3880X2Y6Z6160X2Y3Z964X4Y6Z348XY9Z396XY6Z6240XY3Z9160X6Y3Z348X3Y6Z3512X2Y6Z332X2Y3Z632X4Y3Z3624XY6Z348XY3Z6240X3Y3Z3272X2Y3Z3336XY3Z3270XYZ64*X^2*Y^12*Z^3+32*X^2*Y^6*Z^9+544*X^4*Y^6*Z^6+96*X*Y^12*Z^3+48*X*Y^6*Z^9+32*X^6*Y^6*Z^3+32*X^2*Y^9*Z^3+880*X^2*Y^6*Z^6+160*X^2*Y^3*Z^9+64*X^4*Y^6*Z^3+48*X*Y^9*Z^3+96*X*Y^6*Z^6+240*X*Y^3*Z^9+160*X^6*Y^3*Z^3+48*X^3*Y^6*Z^3+512*X^2*Y^6*Z^3+32*X^2*Y^3*Z^6+32*X^4*Y^3*Z^3+624*X*Y^6*Z^3+48*X*Y^3*Z^6+240*X^3*Y^3*Z^3+272*X^2*Y^3*Z^3+336*X*Y^3*Z^3+270*X*Y*Z

Algorithm definition

The algorithm ⟨9×30×31:4910⟩ is the (Kronecker) tensor product of ⟨9×15×31:2455⟩ with ⟨1×2×1:2⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table