Description of fast matrix multiplication algorithm: ⟨9×29×32:4860⟩

Algorithm type

13X6Y2Z6+48X4Y6Z4+5X5Y2Z6+X4Y5Z4+X3Y6Z4+420X4Y4Z4+4X3Y5Z4+13X2Y4Z6+11X4Y3Z4+11X3Y4Z4+5X2Y3Z6+13X6Y2Z2+14X6YZ3+44X3Y3Z4+129X2Y6Z2+114X2Y4Z4+160X2Y2Z6+5X5Y2Z2+4X5YZ3+49X4Y3Z2+13X2Y5Z2+2X2Y3Z4+20X2YZ6+XY6Z2+2XY4Z4+14X6YZ+445X4Y2Z2+3X3Y3Z2+16X3Y2Z3+701X2Y4Z2+252X2Y2Z4+82XY6Z+XY5Z2+14XY4Z3+8XY3Z4+4X5YZ+11X4YZ2+39X3Y2Z2+36X2Y3Z2+18X2Y2Z3+8XY5Z+130XY4Z2+4XY3Z3+14X4YZ+16X3Y2Z+11X3YZ2+86X2Y3Z+178X2Y2Z2+174X2YZ3+273XY4Z+29XY3Z2+164XY2Z3+4X3YZ+295X2Y2Z+259X2YZ2+9XY3Z+263XY2Z2+16XYZ3+69X2YZ+77XY2Z+2XYZ2+11XYZ13X6Y2Z648X4Y6Z45X5Y2Z6X4Y5Z4X3Y6Z4420X4Y4Z44X3Y5Z413X2Y4Z611X4Y3Z411X3Y4Z45X2Y3Z613X6Y2Z214X6YZ344X3Y3Z4129X2Y6Z2114X2Y4Z4160X2Y2Z65X5Y2Z24X5YZ349X4Y3Z213X2Y5Z22X2Y3Z420X2YZ6XY6Z22XY4Z414X6YZ445X4Y2Z23X3Y3Z216X3Y2Z3701X2Y4Z2252X2Y2Z482XY6ZXY5Z214XY4Z38XY3Z44X5YZ11X4YZ239X3Y2Z236X2Y3Z218X2Y2Z38XY5Z130XY4Z24XY3Z314X4YZ16X3Y2Z11X3YZ286X2Y3Z178X2Y2Z2174X2YZ3273XY4Z29XY3Z2164XY2Z34X3YZ295X2Y2Z259X2YZ29XY3Z263XY2Z216XYZ369X2YZ77XY2Z2XYZ211XYZ13*X^6*Y^2*Z^6+48*X^4*Y^6*Z^4+5*X^5*Y^2*Z^6+X^4*Y^5*Z^4+X^3*Y^6*Z^4+420*X^4*Y^4*Z^4+4*X^3*Y^5*Z^4+13*X^2*Y^4*Z^6+11*X^4*Y^3*Z^4+11*X^3*Y^4*Z^4+5*X^2*Y^3*Z^6+13*X^6*Y^2*Z^2+14*X^6*Y*Z^3+44*X^3*Y^3*Z^4+129*X^2*Y^6*Z^2+114*X^2*Y^4*Z^4+160*X^2*Y^2*Z^6+5*X^5*Y^2*Z^2+4*X^5*Y*Z^3+49*X^4*Y^3*Z^2+13*X^2*Y^5*Z^2+2*X^2*Y^3*Z^4+20*X^2*Y*Z^6+X*Y^6*Z^2+2*X*Y^4*Z^4+14*X^6*Y*Z+445*X^4*Y^2*Z^2+3*X^3*Y^3*Z^2+16*X^3*Y^2*Z^3+701*X^2*Y^4*Z^2+252*X^2*Y^2*Z^4+82*X*Y^6*Z+X*Y^5*Z^2+14*X*Y^4*Z^3+8*X*Y^3*Z^4+4*X^5*Y*Z+11*X^4*Y*Z^2+39*X^3*Y^2*Z^2+36*X^2*Y^3*Z^2+18*X^2*Y^2*Z^3+8*X*Y^5*Z+130*X*Y^4*Z^2+4*X*Y^3*Z^3+14*X^4*Y*Z+16*X^3*Y^2*Z+11*X^3*Y*Z^2+86*X^2*Y^3*Z+178*X^2*Y^2*Z^2+174*X^2*Y*Z^3+273*X*Y^4*Z+29*X*Y^3*Z^2+164*X*Y^2*Z^3+4*X^3*Y*Z+295*X^2*Y^2*Z+259*X^2*Y*Z^2+9*X*Y^3*Z+263*X*Y^2*Z^2+16*X*Y*Z^3+69*X^2*Y*Z+77*X*Y^2*Z+2*X*Y*Z^2+11*X*Y*Z

Algorithm definition

The algorithm ⟨9×29×32:4860⟩ is the projection [[0, 30], [0]] of ⟨9×30×32:4860⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table