Description of fast matrix multiplication algorithm: ⟨9×28×32:4599⟩

Algorithm type

12X4Y12Z4+4X2Y16Z2+12X2Y12Z6+4XY16Z3+6XY16Z+24X4Y9Z4+30X4Y8Z4+42X4Y6Z6+50X2Y12Z2+30X2Y8Z6+24XY12Z3+24X2Y9Z4+8XY12Z2+120X4Y6Z4+105X4Y4Z6+30X2Y6Z6+36XY12Z+48X2Y9Z2+14X2Y8Z3+6X4Y6Z2+162X4Y4Z4+42X4Y2Z6+89X2Y8Z2+60X2Y6Z4+87X2Y4Z6+48XY9Z2+34XY8Z3+24X4Y3Z4+2X2Y8Z+84X2Y6Z3+84X2Y3Z6+15X4Y4Z2+60X4Y2Z4+180X2Y6Z2+240X2Y2Z6+40XY8Z+60XY6Z3+12X2Y6Z+84X2Y4Z3+66X2Y3Z4+84X2YZ6+48XY6Z2+6X4Y2Z2+188X2Y4Z2+105X2Y2Z4+24XY6Z+108XY4Z3+12X2Y4Z+112X2Y3Z2+70X2Y2Z3+42X2YZ4+14XY4Z2+168XY3Z3+292X2Y2Z2+78XY4Z+124XY3Z2+218XY2Z3+10X2Y2Z+72X2YZ2+144XY3Z+84XY2Z2+140XYZ3+164XY2Z+70XYZ2+120XYZ12X4Y12Z44X2Y16Z212X2Y12Z64XY16Z36XY16Z24X4Y9Z430X4Y8Z442X4Y6Z650X2Y12Z230X2Y8Z624XY12Z324X2Y9Z48XY12Z2120X4Y6Z4105X4Y4Z630X2Y6Z636XY12Z48X2Y9Z214X2Y8Z36X4Y6Z2162X4Y4Z442X4Y2Z689X2Y8Z260X2Y6Z487X2Y4Z648XY9Z234XY8Z324X4Y3Z42X2Y8Z84X2Y6Z384X2Y3Z615X4Y4Z260X4Y2Z4180X2Y6Z2240X2Y2Z640XY8Z60XY6Z312X2Y6Z84X2Y4Z366X2Y3Z484X2YZ648XY6Z26X4Y2Z2188X2Y4Z2105X2Y2Z424XY6Z108XY4Z312X2Y4Z112X2Y3Z270X2Y2Z342X2YZ414XY4Z2168XY3Z3292X2Y2Z278XY4Z124XY3Z2218XY2Z310X2Y2Z72X2YZ2144XY3Z84XY2Z2140XYZ3164XY2Z70XYZ2120XYZ12*X^4*Y^12*Z^4+4*X^2*Y^16*Z^2+12*X^2*Y^12*Z^6+4*X*Y^16*Z^3+6*X*Y^16*Z+24*X^4*Y^9*Z^4+30*X^4*Y^8*Z^4+42*X^4*Y^6*Z^6+50*X^2*Y^12*Z^2+30*X^2*Y^8*Z^6+24*X*Y^12*Z^3+24*X^2*Y^9*Z^4+8*X*Y^12*Z^2+120*X^4*Y^6*Z^4+105*X^4*Y^4*Z^6+30*X^2*Y^6*Z^6+36*X*Y^12*Z+48*X^2*Y^9*Z^2+14*X^2*Y^8*Z^3+6*X^4*Y^6*Z^2+162*X^4*Y^4*Z^4+42*X^4*Y^2*Z^6+89*X^2*Y^8*Z^2+60*X^2*Y^6*Z^4+87*X^2*Y^4*Z^6+48*X*Y^9*Z^2+34*X*Y^8*Z^3+24*X^4*Y^3*Z^4+2*X^2*Y^8*Z+84*X^2*Y^6*Z^3+84*X^2*Y^3*Z^6+15*X^4*Y^4*Z^2+60*X^4*Y^2*Z^4+180*X^2*Y^6*Z^2+240*X^2*Y^2*Z^6+40*X*Y^8*Z+60*X*Y^6*Z^3+12*X^2*Y^6*Z+84*X^2*Y^4*Z^3+66*X^2*Y^3*Z^4+84*X^2*Y*Z^6+48*X*Y^6*Z^2+6*X^4*Y^2*Z^2+188*X^2*Y^4*Z^2+105*X^2*Y^2*Z^4+24*X*Y^6*Z+108*X*Y^4*Z^3+12*X^2*Y^4*Z+112*X^2*Y^3*Z^2+70*X^2*Y^2*Z^3+42*X^2*Y*Z^4+14*X*Y^4*Z^2+168*X*Y^3*Z^3+292*X^2*Y^2*Z^2+78*X*Y^4*Z+124*X*Y^3*Z^2+218*X*Y^2*Z^3+10*X^2*Y^2*Z+72*X^2*Y*Z^2+144*X*Y^3*Z+84*X*Y^2*Z^2+140*X*Y*Z^3+164*X*Y^2*Z+70*X*Y*Z^2+120*X*Y*Z

Algorithm definition

The algorithm ⟨9×28×32:4599⟩ is the (Kronecker) tensor product of ⟨3×4×8:73⟩ with ⟨3×7×4:63⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table