Description of fast matrix multiplication algorithm: ⟨9×25×25:3364⟩

Algorithm type

4XY16Z+X9Y4Z+4XY12Z+XY4Z9+10X9Y2Z+34X6Y4Z2+289X4Y4Z4+4X3Y8Z+68X2Y8Z2+34X2Y4Z6+4XY8Z3+10XY2Z9+25X9YZ+4X6Y4Z+8X2Y8Z+XY9Z+8XY8Z2+4XY4Z6+25XYZ9+170X6Y2Z2+68X4Y4Z2+2X3Y6Z+2X3Y4Z3+34X2Y6Z2+68X2Y4Z4+170X2Y2Z6+52XY8Z+2XY6Z3+22X6Y2Z+4X4Y4Z+4X3Y4Z2+4X2Y6Z+4X2Y4Z3+4XY6Z2+4XY4Z4+22XY2Z6+10X6YZ+34X4Y2Z2+46X3Y4Z+20X3Y2Z3+450X2Y4Z2+34X2Y2Z4+26XY6Z+46XY4Z3+10XYZ6+4X4Y2Z+10X3Y3Z+22X3Y2Z2+50X3YZ3+56X2Y4Z+22X2Y2Z3+56XY4Z2+10XY3Z3+4XY2Z4+X4YZ+144X3Y2Z+10X3YZ2+2X2Y3Z+246X2Y2Z2+10X2YZ3+197XY4Z+2XY3Z2+144XY2Z3+XYZ4+70X3YZ+54X2Y2Z+2X2YZ2+14XY3Z+54XY2Z2+70XYZ3+14X2YZ+182XY2Z+14XYZ2+49XYZ4XY16ZX9Y4Z4XY12ZXY4Z910X9Y2Z34X6Y4Z2289X4Y4Z44X3Y8Z68X2Y8Z234X2Y4Z64XY8Z310XY2Z925X9YZ4X6Y4Z8X2Y8ZXY9Z8XY8Z24XY4Z625XYZ9170X6Y2Z268X4Y4Z22X3Y6Z2X3Y4Z334X2Y6Z268X2Y4Z4170X2Y2Z652XY8Z2XY6Z322X6Y2Z4X4Y4Z4X3Y4Z24X2Y6Z4X2Y4Z34XY6Z24XY4Z422XY2Z610X6YZ34X4Y2Z246X3Y4Z20X3Y2Z3450X2Y4Z234X2Y2Z426XY6Z46XY4Z310XYZ64X4Y2Z10X3Y3Z22X3Y2Z250X3YZ356X2Y4Z22X2Y2Z356XY4Z210XY3Z34XY2Z4X4YZ144X3Y2Z10X3YZ22X2Y3Z246X2Y2Z210X2YZ3197XY4Z2XY3Z2144XY2Z3XYZ470X3YZ54X2Y2Z2X2YZ214XY3Z54XY2Z270XYZ314X2YZ182XY2Z14XYZ249XYZ4*X*Y^16*Z+X^9*Y^4*Z+4*X*Y^12*Z+X*Y^4*Z^9+10*X^9*Y^2*Z+34*X^6*Y^4*Z^2+289*X^4*Y^4*Z^4+4*X^3*Y^8*Z+68*X^2*Y^8*Z^2+34*X^2*Y^4*Z^6+4*X*Y^8*Z^3+10*X*Y^2*Z^9+25*X^9*Y*Z+4*X^6*Y^4*Z+8*X^2*Y^8*Z+X*Y^9*Z+8*X*Y^8*Z^2+4*X*Y^4*Z^6+25*X*Y*Z^9+170*X^6*Y^2*Z^2+68*X^4*Y^4*Z^2+2*X^3*Y^6*Z+2*X^3*Y^4*Z^3+34*X^2*Y^6*Z^2+68*X^2*Y^4*Z^4+170*X^2*Y^2*Z^6+52*X*Y^8*Z+2*X*Y^6*Z^3+22*X^6*Y^2*Z+4*X^4*Y^4*Z+4*X^3*Y^4*Z^2+4*X^2*Y^6*Z+4*X^2*Y^4*Z^3+4*X*Y^6*Z^2+4*X*Y^4*Z^4+22*X*Y^2*Z^6+10*X^6*Y*Z+34*X^4*Y^2*Z^2+46*X^3*Y^4*Z+20*X^3*Y^2*Z^3+450*X^2*Y^4*Z^2+34*X^2*Y^2*Z^4+26*X*Y^6*Z+46*X*Y^4*Z^3+10*X*Y*Z^6+4*X^4*Y^2*Z+10*X^3*Y^3*Z+22*X^3*Y^2*Z^2+50*X^3*Y*Z^3+56*X^2*Y^4*Z+22*X^2*Y^2*Z^3+56*X*Y^4*Z^2+10*X*Y^3*Z^3+4*X*Y^2*Z^4+X^4*Y*Z+144*X^3*Y^2*Z+10*X^3*Y*Z^2+2*X^2*Y^3*Z+246*X^2*Y^2*Z^2+10*X^2*Y*Z^3+197*X*Y^4*Z+2*X*Y^3*Z^2+144*X*Y^2*Z^3+X*Y*Z^4+70*X^3*Y*Z+54*X^2*Y^2*Z+2*X^2*Y*Z^2+14*X*Y^3*Z+54*X*Y^2*Z^2+70*X*Y*Z^3+14*X^2*Y*Z+182*X*Y^2*Z+14*X*Y*Z^2+49*X*Y*Z

Algorithm definition

The algorithm ⟨9×25×25:3364⟩ is the (Kronecker) tensor product of ⟨3×5×5:58⟩ with ⟨3×5×5:58⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table