Description of fast matrix multiplication algorithm: ⟨9×24×28:3402⟩

Algorithm type

108X4Y6Z4+270X4Y4Z4+36X2Y8Z2+108X4Y2Z4+324X2Y6Z2+36XY8Z+108X4Y3Z2+270X4Y2Z2+486X2Y4Z2+216XY6Z+108X4YZ2+36X2Y4Z+216X2Y3Z+288X2Y2Z2+216XY4Z+216X2Y2Z+180X2YZ+180XY2Z108X4Y6Z4270X4Y4Z436X2Y8Z2108X4Y2Z4324X2Y6Z236XY8Z108X4Y3Z2270X4Y2Z2486X2Y4Z2216XY6Z108X4YZ236X2Y4Z216X2Y3Z288X2Y2Z2216XY4Z216X2Y2Z180X2YZ180XY2Z108*X^4*Y^6*Z^4+270*X^4*Y^4*Z^4+36*X^2*Y^8*Z^2+108*X^4*Y^2*Z^4+324*X^2*Y^6*Z^2+36*X*Y^8*Z+108*X^4*Y^3*Z^2+270*X^4*Y^2*Z^2+486*X^2*Y^4*Z^2+216*X*Y^6*Z+108*X^4*Y*Z^2+36*X^2*Y^4*Z+216*X^2*Y^3*Z+288*X^2*Y^2*Z^2+216*X*Y^4*Z+216*X^2*Y^2*Z+180*X^2*Y*Z+180*X*Y^2*Z

Algorithm definition

The algorithm ⟨9×24×28:3402⟩ is the (Kronecker) tensor product of ⟨3×4×7:63⟩ with ⟨3×6×4:54⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table