Description of fast matrix multiplication algorithm: ⟨9×24×27:3320⟩

Algorithm type

400X6Y6Z4+32X9Y3Z2+632X6Y6Z2+32X3Y9Z2+48X9Y3Z+48X6Y6Z+48X3Y9Z+16X3Y3Z6+64X6Y3Z2+352X3Y6Z2+96X6Y3Z+528X3Y6Z+288X3Y3Z4+24X3Y3Z3+544X3Y3Z2+168X3Y3Z400X6Y6Z432X9Y3Z2632X6Y6Z232X3Y9Z248X9Y3Z48X6Y6Z48X3Y9Z16X3Y3Z664X6Y3Z2352X3Y6Z296X6Y3Z528X3Y6Z288X3Y3Z424X3Y3Z3544X3Y3Z2168X3Y3Z400*X^6*Y^6*Z^4+32*X^9*Y^3*Z^2+632*X^6*Y^6*Z^2+32*X^3*Y^9*Z^2+48*X^9*Y^3*Z+48*X^6*Y^6*Z+48*X^3*Y^9*Z+16*X^3*Y^3*Z^6+64*X^6*Y^3*Z^2+352*X^3*Y^6*Z^2+96*X^6*Y^3*Z+528*X^3*Y^6*Z+288*X^3*Y^3*Z^4+24*X^3*Y^3*Z^3+544*X^3*Y^3*Z^2+168*X^3*Y^3*Z

Algorithm definition

The algorithm ⟨9×24×27:3320⟩ is the (Kronecker) tensor product of ⟨3×4×9:83⟩ with ⟨3×6×3:40⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table