Description of fast matrix multiplication algorithm: ⟨9×21×24:2640⟩

Algorithm type

32X4Y9Z6+16X6Y6Z6+16X2Y12Z3+48X2Y9Z6+240X4Y6Z6+24XY12Z3+24X3Y6Z6+64X2Y9Z3+360X2Y6Z6+96XY9Z3+224X2Y6Z3+64X4Y3Z3+336XY6Z3+496X2Y3Z3+600XY3Z332X4Y9Z616X6Y6Z616X2Y12Z348X2Y9Z6240X4Y6Z624XY12Z324X3Y6Z664X2Y9Z3360X2Y6Z696XY9Z3224X2Y6Z364X4Y3Z3336XY6Z3496X2Y3Z3600XY3Z332*X^4*Y^9*Z^6+16*X^6*Y^6*Z^6+16*X^2*Y^12*Z^3+48*X^2*Y^9*Z^6+240*X^4*Y^6*Z^6+24*X*Y^12*Z^3+24*X^3*Y^6*Z^6+64*X^2*Y^9*Z^3+360*X^2*Y^6*Z^6+96*X*Y^9*Z^3+224*X^2*Y^6*Z^3+64*X^4*Y^3*Z^3+336*X*Y^6*Z^3+496*X^2*Y^3*Z^3+600*X*Y^3*Z^3

Algorithm definition

The algorithm ⟨9×21×24:2640⟩ is the (Kronecker) tensor product of ⟨3×3×6:40⟩ with ⟨3×7×4:66⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table