Description of fast matrix multiplication algorithm: ⟨9×21×24:2520⟩

Algorithm type

96X4Y9Z6+32X2Y12Z3+144X2Y9Z6+240X4Y6Z6+48XY12Z3+192X2Y9Z3+360X2Y6Z6+96X4Y3Z6+288XY9Z3+192X2Y6Z3+144X2Y3Z6+288XY6Z3+160X2Y3Z3+240XY3Z396X4Y9Z632X2Y12Z3144X2Y9Z6240X4Y6Z648XY12Z3192X2Y9Z3360X2Y6Z696X4Y3Z6288XY9Z3192X2Y6Z3144X2Y3Z6288XY6Z3160X2Y3Z3240XY3Z396*X^4*Y^9*Z^6+32*X^2*Y^12*Z^3+144*X^2*Y^9*Z^6+240*X^4*Y^6*Z^6+48*X*Y^12*Z^3+192*X^2*Y^9*Z^3+360*X^2*Y^6*Z^6+96*X^4*Y^3*Z^6+288*X*Y^9*Z^3+192*X^2*Y^6*Z^3+144*X^2*Y^3*Z^6+288*X*Y^6*Z^3+160*X^2*Y^3*Z^3+240*X*Y^3*Z^3

Algorithm definition

The algorithm ⟨9×21×24:2520⟩ is the (Kronecker) tensor product of ⟨3×3×6:40⟩ with ⟨3×7×4:63⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table