Description of fast matrix multiplication algorithm: ⟨9×18×30:2760⟩

Algorithm type

256X6Y9Z6+384X6Y9Z3+384X3Y9Z6+112X6Y6Z4+576X3Y9Z3+16X9Y3Z2+168X6Y6Z2+32X3Y9Z2+24X9Y3Z+48X3Y9Z+32X3Y6Z4+32X3Y3Z6+112X3Y6Z2+96X3Y6Z+64X3Y3Z4+48X3Y3Z3+208X3Y3Z2+168X3Y3Z256X6Y9Z6384X6Y9Z3384X3Y9Z6112X6Y6Z4576X3Y9Z316X9Y3Z2168X6Y6Z232X3Y9Z224X9Y3Z48X3Y9Z32X3Y6Z432X3Y3Z6112X3Y6Z296X3Y6Z64X3Y3Z448X3Y3Z3208X3Y3Z2168X3Y3Z256*X^6*Y^9*Z^6+384*X^6*Y^9*Z^3+384*X^3*Y^9*Z^6+112*X^6*Y^6*Z^4+576*X^3*Y^9*Z^3+16*X^9*Y^3*Z^2+168*X^6*Y^6*Z^2+32*X^3*Y^9*Z^2+24*X^9*Y^3*Z+48*X^3*Y^9*Z+32*X^3*Y^6*Z^4+32*X^3*Y^3*Z^6+112*X^3*Y^6*Z^2+96*X^3*Y^6*Z+64*X^3*Y^3*Z^4+48*X^3*Y^3*Z^3+208*X^3*Y^3*Z^2+168*X^3*Y^3*Z

Algorithm definition

The algorithm ⟨9×18×30:2760⟩ is the (Kronecker) tensor product of ⟨3×3×10:69⟩ with ⟨3×6×3:40⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table