Description of fast matrix multiplication algorithm: ⟨9×16×25:2209⟩

Algorithm type

169X4Y4Z4+9X9YZ+4XY9Z+16XYZ9+78X6Y2Z2+26X4Y4Z2+52X2Y6Z2+52X2Y4Z4+104X2Y2Z6+6X6Y2Z+X4Y4Z+4X2Y6Z+8XY6Z2+4XY4Z4+16XY2Z6+18X6YZ+78X4Y2Z2+212X2Y4Z2+156X2Y2Z4+32XY6Z+48XYZ6+6X4Y2Z+12X3Y3Z+12X3Y2Z2+24X3YZ3+16X2Y4Z+8X2Y2Z3+32XY4Z2+16XY3Z3+24XY2Z4+9X4YZ+48X3Y2Z+36X3YZ2+12X2Y3Z+154X2Y2Z2+24X2YZ3+64XY4Z+24XY3Z2+64XY2Z3+36XYZ4+30X3YZ+58X2Y2Z+36X2YZ2+20XY3Z+116XY2Z2+40XYZ3+30X2YZ+80XY2Z+60XYZ2+25XYZ169X4Y4Z49X9YZ4XY9Z16XYZ978X6Y2Z226X4Y4Z252X2Y6Z252X2Y4Z4104X2Y2Z66X6Y2ZX4Y4Z4X2Y6Z8XY6Z24XY4Z416XY2Z618X6YZ78X4Y2Z2212X2Y4Z2156X2Y2Z432XY6Z48XYZ66X4Y2Z12X3Y3Z12X3Y2Z224X3YZ316X2Y4Z8X2Y2Z332XY4Z216XY3Z324XY2Z49X4YZ48X3Y2Z36X3YZ212X2Y3Z154X2Y2Z224X2YZ364XY4Z24XY3Z264XY2Z336XYZ430X3YZ58X2Y2Z36X2YZ220XY3Z116XY2Z240XYZ330X2YZ80XY2Z60XYZ225XYZ169*X^4*Y^4*Z^4+9*X^9*Y*Z+4*X*Y^9*Z+16*X*Y*Z^9+78*X^6*Y^2*Z^2+26*X^4*Y^4*Z^2+52*X^2*Y^6*Z^2+52*X^2*Y^4*Z^4+104*X^2*Y^2*Z^6+6*X^6*Y^2*Z+X^4*Y^4*Z+4*X^2*Y^6*Z+8*X*Y^6*Z^2+4*X*Y^4*Z^4+16*X*Y^2*Z^6+18*X^6*Y*Z+78*X^4*Y^2*Z^2+212*X^2*Y^4*Z^2+156*X^2*Y^2*Z^4+32*X*Y^6*Z+48*X*Y*Z^6+6*X^4*Y^2*Z+12*X^3*Y^3*Z+12*X^3*Y^2*Z^2+24*X^3*Y*Z^3+16*X^2*Y^4*Z+8*X^2*Y^2*Z^3+32*X*Y^4*Z^2+16*X*Y^3*Z^3+24*X*Y^2*Z^4+9*X^4*Y*Z+48*X^3*Y^2*Z+36*X^3*Y*Z^2+12*X^2*Y^3*Z+154*X^2*Y^2*Z^2+24*X^2*Y*Z^3+64*X*Y^4*Z+24*X*Y^3*Z^2+64*X*Y^2*Z^3+36*X*Y*Z^4+30*X^3*Y*Z+58*X^2*Y^2*Z+36*X^2*Y*Z^2+20*X*Y^3*Z+116*X*Y^2*Z^2+40*X*Y*Z^3+30*X^2*Y*Z+80*X*Y^2*Z+60*X*Y*Z^2+25*X*Y*Z

Algorithm definition

The algorithm ⟨9×16×25:2209⟩ is the (Kronecker) tensor product of ⟨3×4×5:47⟩ with ⟨3×4×5:47⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table