Description of fast matrix multiplication algorithm: ⟨9×16×21:1827⟩

Algorithm type

42X4Y6Z4+4XY12Z+12X2Y9Z2+12X4Y6Z2+105X4Y4Z4+14X2Y8Z2+12X6Y3Z2+4X2Y8Z+6X2Y3Z6+24XY9Z+30X6Y2Z2+30X4Y4Z2+42X4Y2Z4+138X2Y6Z2+15X2Y2Z6+8XY8Z+12X6YZ2+24X4Y3Z2+24X2Y6Z+6X2YZ6+72X4Y2Z2+4X3Y4Z+144X2Y4Z2+72XY6Z+2XY4Z3+24X4YZ2+24X3Y3Z+32X2Y4Z+54X2Y3Z2+12XY3Z3+24X3Y2Z+48X2Y3Z+199X2Y2Z2+62XY4Z+12XY2Z3+20X3YZ+68X2Y2Z+42X2YZ2+104XY3Z+10XYZ3+40X2YZ+124XY2Z+70XYZ42X4Y6Z44XY12Z12X2Y9Z212X4Y6Z2105X4Y4Z414X2Y8Z212X6Y3Z24X2Y8Z6X2Y3Z624XY9Z30X6Y2Z230X4Y4Z242X4Y2Z4138X2Y6Z215X2Y2Z68XY8Z12X6YZ224X4Y3Z224X2Y6Z6X2YZ672X4Y2Z24X3Y4Z144X2Y4Z272XY6Z2XY4Z324X4YZ224X3Y3Z32X2Y4Z54X2Y3Z212XY3Z324X3Y2Z48X2Y3Z199X2Y2Z262XY4Z12XY2Z320X3YZ68X2Y2Z42X2YZ2104XY3Z10XYZ340X2YZ124XY2Z70XYZ42*X^4*Y^6*Z^4+4*X*Y^12*Z+12*X^2*Y^9*Z^2+12*X^4*Y^6*Z^2+105*X^4*Y^4*Z^4+14*X^2*Y^8*Z^2+12*X^6*Y^3*Z^2+4*X^2*Y^8*Z+6*X^2*Y^3*Z^6+24*X*Y^9*Z+30*X^6*Y^2*Z^2+30*X^4*Y^4*Z^2+42*X^4*Y^2*Z^4+138*X^2*Y^6*Z^2+15*X^2*Y^2*Z^6+8*X*Y^8*Z+12*X^6*Y*Z^2+24*X^4*Y^3*Z^2+24*X^2*Y^6*Z+6*X^2*Y*Z^6+72*X^4*Y^2*Z^2+4*X^3*Y^4*Z+144*X^2*Y^4*Z^2+72*X*Y^6*Z+2*X*Y^4*Z^3+24*X^4*Y*Z^2+24*X^3*Y^3*Z+32*X^2*Y^4*Z+54*X^2*Y^3*Z^2+12*X*Y^3*Z^3+24*X^3*Y^2*Z+48*X^2*Y^3*Z+199*X^2*Y^2*Z^2+62*X*Y^4*Z+12*X*Y^2*Z^3+20*X^3*Y*Z+68*X^2*Y^2*Z+42*X^2*Y*Z^2+104*X*Y^3*Z+10*X*Y*Z^3+40*X^2*Y*Z+124*X*Y^2*Z+70*X*Y*Z

Algorithm definition

The algorithm ⟨9×16×21:1827⟩ is the (Kronecker) tensor product of ⟨3×4×3:29⟩ with ⟨3×4×7:63⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table