Description of fast matrix multiplication algorithm: ⟨9×15×30:2320⟩

Algorithm type

32X2Y12Z3+16X2Y6Z9+272X4Y6Z6+48XY12Z3+24XY6Z9+16X6Y6Z3+16X2Y9Z3+440X2Y6Z6+80X2Y3Z9+32X4Y6Z3+24XY9Z3+48XY6Z6+120XY3Z9+80X6Y3Z3+24X3Y6Z3+256X2Y6Z3+16X2Y3Z6+16X4Y3Z3+312XY6Z3+24XY3Z6+120X3Y3Z3+136X2Y3Z3+168XY3Z332X2Y12Z316X2Y6Z9272X4Y6Z648XY12Z324XY6Z916X6Y6Z316X2Y9Z3440X2Y6Z680X2Y3Z932X4Y6Z324XY9Z348XY6Z6120XY3Z980X6Y3Z324X3Y6Z3256X2Y6Z316X2Y3Z616X4Y3Z3312XY6Z324XY3Z6120X3Y3Z3136X2Y3Z3168XY3Z332*X^2*Y^12*Z^3+16*X^2*Y^6*Z^9+272*X^4*Y^6*Z^6+48*X*Y^12*Z^3+24*X*Y^6*Z^9+16*X^6*Y^6*Z^3+16*X^2*Y^9*Z^3+440*X^2*Y^6*Z^6+80*X^2*Y^3*Z^9+32*X^4*Y^6*Z^3+24*X*Y^9*Z^3+48*X*Y^6*Z^6+120*X*Y^3*Z^9+80*X^6*Y^3*Z^3+24*X^3*Y^6*Z^3+256*X^2*Y^6*Z^3+16*X^2*Y^3*Z^6+16*X^4*Y^3*Z^3+312*X*Y^6*Z^3+24*X*Y^3*Z^6+120*X^3*Y^3*Z^3+136*X^2*Y^3*Z^3+168*X*Y^3*Z^3

Algorithm definition

The algorithm ⟨9×15×30:2320⟩ is the (Kronecker) tensor product of ⟨3×3×6:40⟩ with ⟨3×5×5:58⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table