Description of fast matrix multiplication algorithm: ⟨9×15×24:1880⟩

Algorithm type

208X4Y6Z6+32X2Y9Z3+328X2Y6Z6+48X2Y3Z9+32X4Y6Z3+48XY9Z3+24XY6Z6+72XY3Z9+64X6Y3Z3+176X2Y6Z3+48X2Y3Z6+96X4Y3Z3+192XY6Z3+72XY3Z6+96X3Y3Z3+224X2Y3Z3+120XY3Z3208X4Y6Z632X2Y9Z3328X2Y6Z648X2Y3Z932X4Y6Z348XY9Z324XY6Z672XY3Z964X6Y3Z3176X2Y6Z348X2Y3Z696X4Y3Z3192XY6Z372XY3Z696X3Y3Z3224X2Y3Z3120XY3Z3208*X^4*Y^6*Z^6+32*X^2*Y^9*Z^3+328*X^2*Y^6*Z^6+48*X^2*Y^3*Z^9+32*X^4*Y^6*Z^3+48*X*Y^9*Z^3+24*X*Y^6*Z^6+72*X*Y^3*Z^9+64*X^6*Y^3*Z^3+176*X^2*Y^6*Z^3+48*X^2*Y^3*Z^6+96*X^4*Y^3*Z^3+192*X*Y^6*Z^3+72*X*Y^3*Z^6+96*X^3*Y^3*Z^3+224*X^2*Y^3*Z^3+120*X*Y^3*Z^3

Algorithm definition

The algorithm ⟨9×15×24:1880⟩ is the (Kronecker) tensor product of ⟨3×3×6:40⟩ with ⟨3×5×4:47⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table