Description of fast matrix multiplication algorithm: ⟨9×14×25:1975⟩

Algorithm type

10X4Y6Z4+120X4Y4Z4+10X2Y8Z2+4X2Y3Z6+4XYZ9+35X6Y2Z2+30X4Y4Z2+20X2Y6Z2+58X2Y2Z6+12X2Y3Z4+60X4Y2Z2+70X2Y4Z2+154X2Y2Z4+4XY4Z3+16XYZ6+14X3YZ3+24X2Y3Z2+12X2Y2Z3+12XY4Z2+8XY3Z3+42X3YZ2+344X2Y2Z2+24X2YZ3+24XY4Z+24XY3Z2+28XY2Z3+12XYZ4+84X3YZ+72X2Y2Z+72X2YZ2+48XY3Z+84XY2Z2+32XYZ3+144X2YZ+168XY2Z+48XYZ2+48XYZ10X4Y6Z4120X4Y4Z410X2Y8Z24X2Y3Z64XYZ935X6Y2Z230X4Y4Z220X2Y6Z258X2Y2Z612X2Y3Z460X4Y2Z270X2Y4Z2154X2Y2Z44XY4Z316XYZ614X3YZ324X2Y3Z212X2Y2Z312XY4Z28XY3Z342X3YZ2344X2Y2Z224X2YZ324XY4Z24XY3Z228XY2Z312XYZ484X3YZ72X2Y2Z72X2YZ248XY3Z84XY2Z232XYZ3144X2YZ168XY2Z48XYZ248XYZ10*X^4*Y^6*Z^4+120*X^4*Y^4*Z^4+10*X^2*Y^8*Z^2+4*X^2*Y^3*Z^6+4*X*Y*Z^9+35*X^6*Y^2*Z^2+30*X^4*Y^4*Z^2+20*X^2*Y^6*Z^2+58*X^2*Y^2*Z^6+12*X^2*Y^3*Z^4+60*X^4*Y^2*Z^2+70*X^2*Y^4*Z^2+154*X^2*Y^2*Z^4+4*X*Y^4*Z^3+16*X*Y*Z^6+14*X^3*Y*Z^3+24*X^2*Y^3*Z^2+12*X^2*Y^2*Z^3+12*X*Y^4*Z^2+8*X*Y^3*Z^3+42*X^3*Y*Z^2+344*X^2*Y^2*Z^2+24*X^2*Y*Z^3+24*X*Y^4*Z+24*X*Y^3*Z^2+28*X*Y^2*Z^3+12*X*Y*Z^4+84*X^3*Y*Z+72*X^2*Y^2*Z+72*X^2*Y*Z^2+48*X*Y^3*Z+84*X*Y^2*Z^2+32*X*Y*Z^3+144*X^2*Y*Z+168*X*Y^2*Z+48*X*Y*Z^2+48*X*Y*Z

Algorithm definition

The algorithm ⟨9×14×25:1975⟩ is the (Kronecker) tensor product of ⟨3×2×5:25⟩ with ⟨3×7×5:79⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table