Description of fast matrix multiplication algorithm: ⟨9×12×30:1880⟩

Algorithm type

208X4Y6Z6+32X2Y9Z3+344X2Y6Z6+64X2Y3Z9+16X4Y6Z3+48XY9Z3+48XY6Z6+96XY3Z9+48X6Y3Z3+152X2Y6Z3+96X2Y3Z6+48X4Y3Z3+192XY6Z3+144XY3Z6+72X3Y3Z3+152X2Y3Z3+120XY3Z3208X4Y6Z632X2Y9Z3344X2Y6Z664X2Y3Z916X4Y6Z348XY9Z348XY6Z696XY3Z948X6Y3Z3152X2Y6Z396X2Y3Z648X4Y3Z3192XY6Z3144XY3Z672X3Y3Z3152X2Y3Z3120XY3Z3208*X^4*Y^6*Z^6+32*X^2*Y^9*Z^3+344*X^2*Y^6*Z^6+64*X^2*Y^3*Z^9+16*X^4*Y^6*Z^3+48*X*Y^9*Z^3+48*X*Y^6*Z^6+96*X*Y^3*Z^9+48*X^6*Y^3*Z^3+152*X^2*Y^6*Z^3+96*X^2*Y^3*Z^6+48*X^4*Y^3*Z^3+192*X*Y^6*Z^3+144*X*Y^3*Z^6+72*X^3*Y^3*Z^3+152*X^2*Y^3*Z^3+120*X*Y^3*Z^3

Algorithm definition

The algorithm ⟨9×12×30:1880⟩ is the (Kronecker) tensor product of ⟨3×3×6:40⟩ with ⟨3×4×5:47⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table