Description of fast matrix multiplication algorithm: ⟨9×12×24:1520⟩

Algorithm type

160X4Y6Z6+32X2Y9Z3+272X2Y6Z6+48X2Y3Z9+32X4Y6Z3+48XY9Z3+48XY6Z6+72XY3Z9+48X6Y3Z3+224X2Y6Z3+16X2Y3Z6+16X4Y3Z3+264XY6Z3+24XY3Z6+72X3Y3Z3+72X2Y3Z3+72XY3Z3160X4Y6Z632X2Y9Z3272X2Y6Z648X2Y3Z932X4Y6Z348XY9Z348XY6Z672XY3Z948X6Y3Z3224X2Y6Z316X2Y3Z616X4Y3Z3264XY6Z324XY3Z672X3Y3Z372X2Y3Z372XY3Z3160*X^4*Y^6*Z^6+32*X^2*Y^9*Z^3+272*X^2*Y^6*Z^6+48*X^2*Y^3*Z^9+32*X^4*Y^6*Z^3+48*X*Y^9*Z^3+48*X*Y^6*Z^6+72*X*Y^3*Z^9+48*X^6*Y^3*Z^3+224*X^2*Y^6*Z^3+16*X^2*Y^3*Z^6+16*X^4*Y^3*Z^3+264*X*Y^6*Z^3+24*X*Y^3*Z^6+72*X^3*Y^3*Z^3+72*X^2*Y^3*Z^3+72*X*Y^3*Z^3

Algorithm definition

The algorithm ⟨9×12×24:1520⟩ is the (Kronecker) tensor product of ⟨3×3×6:40⟩ with ⟨3×4×4:38⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table