Description of fast matrix multiplication algorithm: ⟨9×11×17:1104⟩

Algorithm type

16X2Y3Z9+24XY3Z9+52X4Y4Z4+2X4Y4Z3+X4Y3Z4+7X3Y4Z4+3X8YZ+19X6Y2Z2+7X4Y3Z3+X3Y3Z4+26X2Y6Z2+13X2Y2Z6+X6Y2Z+12X5Y2Z2+X3Y3Z3+X3Y2Z4+9X2Y5Z2+5X2Y2Z5+X6YZ+59X2Y4Z2+48X2Y3Z3+59X2Y2Z4+28XY6Z+14XYZ6+2X5YZ+X3Y3Z+X3Y2Z2+4X3YZ3+2X2Y4Z+6X2Y3Z2+6X2Y2Z3+X2YZ4+8XY5Z+4XY4Z2+72XY3Z3+3XY2Z4+4XYZ5+23X3Y2Z+21X3YZ2+3X2Y3Z+139X2Y2Z2+2X2YZ3+32XY3Z2+16XY2Z3+XYZ4+14X3YZ+6X2Y2Z+3X2YZ2+6XY3Z+12XY2Z2+18XYZ3+9X2YZ+114XY2Z+108XYZ2+54XYZ16X2Y3Z924XY3Z952X4Y4Z42X4Y4Z3X4Y3Z47X3Y4Z43X8YZ19X6Y2Z27X4Y3Z3X3Y3Z426X2Y6Z213X2Y2Z6X6Y2Z12X5Y2Z2X3Y3Z3X3Y2Z49X2Y5Z25X2Y2Z5X6YZ59X2Y4Z248X2Y3Z359X2Y2Z428XY6Z14XYZ62X5YZX3Y3ZX3Y2Z24X3YZ32X2Y4Z6X2Y3Z26X2Y2Z3X2YZ48XY5Z4XY4Z272XY3Z33XY2Z44XYZ523X3Y2Z21X3YZ23X2Y3Z139X2Y2Z22X2YZ332XY3Z216XY2Z3XYZ414X3YZ6X2Y2Z3X2YZ26XY3Z12XY2Z218XYZ39X2YZ114XY2Z108XYZ254XYZ16*X^2*Y^3*Z^9+24*X*Y^3*Z^9+52*X^4*Y^4*Z^4+2*X^4*Y^4*Z^3+X^4*Y^3*Z^4+7*X^3*Y^4*Z^4+3*X^8*Y*Z+19*X^6*Y^2*Z^2+7*X^4*Y^3*Z^3+X^3*Y^3*Z^4+26*X^2*Y^6*Z^2+13*X^2*Y^2*Z^6+X^6*Y^2*Z+12*X^5*Y^2*Z^2+X^3*Y^3*Z^3+X^3*Y^2*Z^4+9*X^2*Y^5*Z^2+5*X^2*Y^2*Z^5+X^6*Y*Z+59*X^2*Y^4*Z^2+48*X^2*Y^3*Z^3+59*X^2*Y^2*Z^4+28*X*Y^6*Z+14*X*Y*Z^6+2*X^5*Y*Z+X^3*Y^3*Z+X^3*Y^2*Z^2+4*X^3*Y*Z^3+2*X^2*Y^4*Z+6*X^2*Y^3*Z^2+6*X^2*Y^2*Z^3+X^2*Y*Z^4+8*X*Y^5*Z+4*X*Y^4*Z^2+72*X*Y^3*Z^3+3*X*Y^2*Z^4+4*X*Y*Z^5+23*X^3*Y^2*Z+21*X^3*Y*Z^2+3*X^2*Y^3*Z+139*X^2*Y^2*Z^2+2*X^2*Y*Z^3+32*X*Y^3*Z^2+16*X*Y^2*Z^3+X*Y*Z^4+14*X^3*Y*Z+6*X^2*Y^2*Z+3*X^2*Y*Z^2+6*X*Y^3*Z+12*X*Y^2*Z^2+18*X*Y*Z^3+9*X^2*Y*Z+114*X*Y^2*Z+108*X*Y*Z^2+54*X*Y*Z

Algorithm definition

The algorithm ⟨9×11×17:1104⟩ could be constructed using the following decomposition:

⟨9×11×17:1104⟩ = ⟨3×4×6:54⟩ + ⟨3×4×6:54⟩ + ⟨3×4×6:54⟩ + ⟨3×4×6:54⟩ + ⟨3×4×6:54⟩ + ⟨3×4×6:54⟩ + ⟨3×4×6:54⟩ + ⟨3×3×6:40⟩ + ⟨3×3×6:40⟩ + ⟨3×4×6:54⟩ + ⟨3×3×6:40⟩ + ⟨3×4×6:54⟩ + ⟨3×3×5:36⟩ + ⟨3×3×5:36⟩ + ⟨3×4×5:47⟩ + ⟨3×4×6:54⟩ + ⟨3×4×6:54⟩ + ⟨3×4×5:47⟩ + ⟨3×4×5:47⟩ + ⟨3×4×5:47⟩ + ⟨3×3×6:40⟩ + ⟨3×3×5:36⟩ + ⟨3×4×6:54⟩.

This decomposition is defined by the following equality:

TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_1_8A_1_9A_1_10A_1_11A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_2_8A_2_9A_2_10A_2_11A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_3_8A_3_9A_3_10A_3_11A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_4_8A_4_9A_4_10A_4_11A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7A_5_8A_5_9A_5_10A_5_11A_6_1A_6_2A_6_3A_6_4A_6_5A_6_6A_6_7A_6_8A_6_9A_6_10A_6_11A_7_1A_7_2A_7_3A_7_4A_7_5A_7_6A_7_7A_7_8A_7_9A_7_10A_7_11A_8_1A_8_2A_8_3A_8_4A_8_5A_8_6A_8_7A_8_8A_8_9A_8_10A_8_11A_9_1A_9_2A_9_3A_9_4A_9_5A_9_6A_9_7A_9_8A_9_9A_9_10A_9_11B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_1_12B_1_13B_1_14B_1_15B_1_16B_1_17B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_2_12B_2_13B_2_14B_2_15B_2_16B_2_17B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_3_12B_3_13B_3_14B_3_15B_3_16B_3_17B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_4_12B_4_13B_4_14B_4_15B_4_16B_4_17B_5_1B_5_2B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_5_12B_5_13B_5_14B_5_15B_5_16B_5_17B_6_1B_6_2B_6_3B_6_4B_6_5B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11B_6_12B_6_13B_6_14B_6_15B_6_16B_6_17B_7_1B_7_2B_7_3B_7_4B_7_5B_7_6B_7_7B_7_8B_7_9B_7_10B_7_11B_7_12B_7_13B_7_14B_7_15B_7_16B_7_17B_8_1B_8_2B_8_3B_8_4B_8_5B_8_6B_8_7B_8_8B_8_9B_8_10B_8_11B_8_12B_8_13B_8_14B_8_15B_8_16B_8_17B_9_1B_9_2B_9_3B_9_4B_9_5B_9_6B_9_7B_9_8B_9_9B_9_10B_9_11B_9_12B_9_13B_9_14B_9_15B_9_16B_9_17B_10_1B_10_2B_10_3B_10_4B_10_5B_10_6B_10_7B_10_8B_10_9B_10_10B_10_11B_10_12B_10_13B_10_14B_10_15B_10_16B_10_17B_11_1B_11_2B_11_3B_11_4B_11_5B_11_6B_11_7B_11_8B_11_9B_11_10B_11_11B_11_12B_11_13B_11_14B_11_15B_11_16B_11_17C_1_1C_1_2C_1_3C_1_4C_1_5C_1_6C_1_7C_1_8C_1_9C_2_1C_2_2C_2_3C_2_4C_2_5C_2_6C_2_7C_2_8C_2_9C_3_1C_3_2C_3_3C_3_4C_3_5C_3_6C_3_7C_3_8C_3_9C_4_1C_4_2C_4_3C_4_4C_4_5C_4_6C_4_7C_4_8C_4_9C_5_1C_5_2C_5_3C_5_4C_5_5C_5_6C_5_7C_5_8C_5_9C_6_1C_6_2C_6_3C_6_4C_6_5C_6_6C_6_7C_6_8C_6_9C_7_1C_7_2C_7_3C_7_4C_7_5C_7_6C_7_7C_7_8C_7_9C_8_1C_8_2C_8_3C_8_4C_8_5C_8_6C_8_7C_8_8C_8_9C_9_1C_9_2C_9_3C_9_4C_9_5C_9_6C_9_7C_9_8C_9_9C_10_1C_10_2C_10_3C_10_4C_10_5C_10_6C_10_7C_10_8C_10_9C_11_1C_11_2C_11_3C_11_4C_11_5C_11_6C_11_7C_11_8C_11_9C_12_1C_12_2C_12_3C_12_4C_12_5C_12_6C_12_7C_12_8C_12_9C_13_1C_13_2C_13_3C_13_4C_13_5C_13_6C_13_7C_13_8C_13_9C_14_1C_14_2C_14_3C_14_4C_14_5C_14_6C_14_7C_14_8C_14_9C_15_1C_15_2C_15_3C_15_4C_15_5C_15_6C_15_7C_15_8C_15_9C_16_1C_16_2C_16_3C_16_4C_16_5C_16_6C_16_7C_16_8C_16_9C_17_1C_17_2C_17_3C_17_4C_17_5C_17_6C_17_7C_17_8C_17_9=TraceMul-A_4_8l+A_4_4-A_4_9l+A_4_5-A_4_10l+A_4_6-A_4_11l+A_4_7-A_5_8l+A_5_4-A_5_9l+A_5_5-A_5_10l+A_5_6-A_5_11l+A_5_7-A_6_8l+A_6_4-A_6_9l+A_6_5-A_6_10l+A_6_6-A_6_11l+A_6_7-B_4_12l+B_4_6-B_4_13l+B_4_7-B_4_14l+B_4_8-B_4_15l+B_4_9-B_4_16l+B_4_10-B_4_17l+B_4_11-B_5_12l+B_5_6-B_5_13l+B_5_7-B_5_14l+B_5_8-B_5_15l+B_5_9-B_5_16l+B_5_10-B_5_17l+B_5_11-B_6_12l+B_6_6-B_6_13l+B_6_7-B_6_14l+B_6_8-B_6_15l+B_6_9-B_6_16l+B_6_10-B_6_17l+B_6_11-B_7_12l+B_7_6-B_7_13l+B_7_7-B_7_14l+B_7_8-B_7_15l+B_7_9-B_7_16l+B_7_10-B_7_17l+B_7_11-C_6_7l+C_6_4-C_6_8l+C_6_5-C_6_9l+C_6_6-C_7_7l+C_7_4-C_7_8l+C_7_5-C_7_9l+C_7_6-C_8_7l+C_8_4-C_8_8l+C_8_5-C_8_9l+C_8_6-C_9_7l+C_9_4-C_9_8l+C_9_5-C_9_9l+C_9_6-C_10_7l+C_10_4-C_10_8l+C_10_5-C_10_9l+C_10_6-C_11_7l+C_11_4-C_11_8l+C_11_5-C_11_9l+C_11_6+TraceMulA_4_4+A_7_4lA_4_5+A_7_5lA_4_6+A_7_6lA_4_7+A_7_7lA_5_4+A_8_4lA_5_5+A_8_5lA_5_6+A_8_6lA_5_7+A_8_7lA_6_4+A_9_4lA_6_5+A_9_5lA_6_6+A_9_6lA_6_7+A_9_7lB_4_6+B_8_6lB_4_7+B_8_7lB_4_8+B_8_8lB_4_9+B_8_9lB_4_10+B_8_10lB_4_11+B_8_11lB_5_6+B_9_6lB_5_7+B_9_7lB_5_8+B_9_8lB_5_9+B_9_9lB_5_10+B_9_10lB_5_11+B_9_11lB_6_6+B_10_6lB_6_7+B_10_7lB_6_8+B_10_8lB_6_9+B_10_9lB_6_10+B_10_10lB_6_11+B_10_11lB_7_6+B_11_6lB_7_7+B_11_7lB_7_8+B_11_8lB_7_9+B_11_9lB_7_10+B_11_10lB_7_11+B_11_11lC_6_4+C_12_4lC_6_5+C_12_5lC_6_6+C_12_6lC_7_4+C_13_4lC_7_5+C_13_5lC_7_6+C_13_6lC_8_4+C_14_4lC_8_5+C_14_5lC_8_6+C_14_6lC_9_4+C_15_4lC_9_5+C_15_5lC_9_6+C_15_6lC_10_4+C_16_4lC_10_5+C_16_5lC_10_6+C_16_6lC_11_4+C_17_4lC_11_5+C_17_5lC_11_6+C_17_6l+TraceMulA_7_8A_7_9A_7_10A_7_11A_8_8A_8_9A_8_10A_8_11A_9_8A_9_9A_9_10A_9_11B_8_12B_8_13B_8_14B_8_15B_8_16B_8_17B_9_12B_9_13B_9_14B_9_15B_9_16B_9_17B_10_12B_10_13B_10_14B_10_15B_10_16B_10_17B_11_12B_11_13B_11_14B_11_15B_11_16B_11_17C_12_7C_12_8C_12_9C_13_7C_13_8C_13_9C_14_7C_14_8C_14_9C_15_7C_15_8C_15_9C_16_7C_16_8C_16_9C_17_7C_17_8C_17_9+TraceMul-A_4_8-A_4_9-A_4_10-A_4_11-A_5_8-A_5_9-A_5_10-A_5_11-A_6_8-A_6_9-A_6_10-A_6_11B_4_6+B_8_6l-B_4_12l-B_8_12B_8_1l+B_4_7+B_8_7l-B_4_13l-B_8_13B_8_2l+B_4_8+B_8_8l-B_4_14l-B_8_14B_8_3l+B_4_9+B_8_9l-B_4_15l-B_8_15B_8_4l+B_4_10+B_8_10l-B_4_16l-B_8_16B_8_5l+B_4_11+B_8_11l-B_4_17l-B_8_17B_5_6+B_9_6l-lB_1_12-B_5_12l-B_9_12B_1_1+B_9_1l+B_5_7+B_9_7l-lB_1_13-B_5_13l-B_9_13B_1_2+B_9_2l+B_5_8+B_9_8l-lB_1_14-B_5_14l-B_9_14B_1_3+B_9_3l+B_5_9+B_9_9l-lB_1_15-B_5_15l-B_9_15B_1_4+B_9_4l+B_5_10+B_9_10l-lB_1_16-B_5_16l-B_9_16B_1_5+B_9_5l+B_5_11+B_9_11l-lB_1_17-B_5_17l-B_9_17B_6_6+B_10_6l-lB_2_12-B_6_12l-B_10_12B_2_1+B_10_1l+B_6_7+B_10_7l-lB_2_13-B_6_13l-B_10_13B_2_2+B_10_2l+B_6_8+B_10_8l-lB_2_14-B_6_14l-B_10_14B_2_3+B_10_3l+B_6_9+B_10_9l-lB_2_15-B_6_15l-B_10_15B_2_4+B_10_4l+B_6_10+B_10_10l-lB_2_16-B_6_16l-B_10_16B_2_5+B_10_5l+B_6_11+B_10_11l-lB_2_17-B_6_17l-B_10_17B_7_6+B_11_6l-lB_3_12-B_7_12l-B_11_12B_3_1+B_11_1l+B_7_7+B_11_7l-lB_3_13-B_7_13l-B_11_13B_3_2+B_11_2l+B_7_8+B_11_8l-lB_3_14-B_7_14l-B_11_14B_3_3+B_11_3l+B_7_9+B_11_9l-lB_3_15-B_7_15l-B_11_15B_3_4+B_11_4l+B_7_10+B_11_10l-lB_3_16-B_7_16l-B_11_16B_3_5+B_11_5l+B_7_11+B_11_11l-lB_3_17-B_7_17l-B_11_17C_12_4C_12_5C_12_6C_13_4C_13_5C_13_6C_14_4C_14_5C_14_6C_15_4C_15_5C_15_6C_16_4C_16_5C_16_6C_17_4C_17_5C_17_6+TraceMul-A_4_4-A_7_4l+lA_1_8+A_4_8l+A_7_8-A_1_1-A_7_1l-A_4_5-A_7_5l+lA_1_9+A_4_9l+A_7_9-A_1_2-A_7_2l-A_4_6-A_7_6l+lA_1_10+A_4_10l+A_7_10-A_1_3-A_7_3l-A_4_7-A_7_7l+lA_1_11+A_4_11l+A_7_11-A_5_4-A_8_4l+lA_2_8+A_5_8l+A_8_8-A_2_1-A_8_1l-A_5_5-A_8_5l+lA_2_9+A_5_9l+A_8_9-A_2_2-A_8_2l-A_5_6-A_8_6l+lA_2_10+A_5_10l+A_8_10-A_2_3-A_8_3l-A_5_7-A_8_7l+lA_2_11+A_5_11l+A_8_11-A_6_4-A_9_4l+lA_3_8+A_6_8l+A_9_8-A_3_1-A_9_1l-A_6_5-A_9_5l+lA_3_9+A_6_9l+A_9_9-A_3_2-A_9_2l-A_6_6-A_9_6l+lA_3_10+A_6_10l+A_9_10-A_3_3-A_9_3l-A_6_7-A_9_7l+lA_3_11+A_6_11l+A_9_11B_8_6B_8_7B_8_8B_8_9B_8_10B_8_11B_9_6B_9_7B_9_8B_9_9B_9_10B_9_11B_10_6B_10_7B_10_8B_10_9B_10_10B_10_11B_11_6B_11_7B_11_8B_11_9B_11_10B_11_11C_6_7C_6_8C_6_9C_7_7C_7_8C_7_9C_8_7C_8_8C_8_9C_9_7C_9_8C_9_9C_10_7C_10_8C_10_9C_11_7C_11_8C_11_9+TraceMulA_7_4A_7_5A_7_6A_7_7A_8_4A_8_5A_8_6A_8_7A_9_4A_9_5A_9_6A_9_7B_4_12B_4_13B_4_14B_4_15B_4_16B_4_17B_5_12B_5_13B_5_14B_5_15B_5_16B_5_17B_6_12B_6_13B_6_14B_6_15B_6_16B_6_17B_7_12B_7_13B_7_14B_7_15B_7_16B_7_17-C_12_1l-C_6_4-C_12_4l+C_6_7l+C_12_7-C_12_2l-C_6_5-C_12_5l+C_6_8l+C_12_8-C_12_3l-C_6_6-C_12_6l+C_6_9l+C_12_9-C_1_1-C_13_1l-C_7_4-C_13_4l+lC_1_7+C_7_7l+C_13_7-C_1_2-C_13_2l-C_7_5-C_13_5l+lC_1_8+C_7_8l+C_13_8-C_1_3-C_13_3l-C_7_6-C_13_6l+lC_1_9+C_7_9l+C_13_9-C_2_1-C_14_1l-C_8_4-C_14_4l+lC_2_7+C_8_7l+C_14_7-C_2_2-C_14_2l-C_8_5-C_14_5l+lC_2_8+C_8_8l+C_14_8-C_2_3-C_14_3l-C_8_6-C_14_6l+lC_2_9+C_8_9l+C_14_9-C_3_1-C_15_1l-C_9_4-C_15_4l+lC_3_7+C_9_7l+C_15_7-C_3_2-C_15_2l-C_9_5-C_15_5l+lC_3_8+C_9_8l+C_15_8-C_3_3-C_15_3l-C_9_6-C_15_6l+lC_3_9+C_9_9l+C_15_9-C_4_1-C_16_1l-C_10_4-C_16_4l+lC_4_7+C_10_7l+C_16_7-C_4_2-C_16_2l-C_10_5-C_16_5l+lC_4_8+C_10_8l+C_16_8-C_4_3-C_16_3l-C_10_6-C_16_6l+lC_4_9+C_10_9l+C_16_9-C_5_1-C_17_1l-C_11_4-C_17_4l+lC_5_7+C_11_7l+C_17_7-C_5_2-C_17_2l-C_11_5-C_17_5l+lC_5_8+C_11_8l+C_17_8-C_5_3-C_17_3l-C_11_6-C_17_6l+lC_5_9+C_11_9l+C_17_9+TraceMul-A_4_4-A_7_4l+A_4_8l-A_4_5-A_7_5l+A_4_9l-A_4_6-A_7_6l+A_4_10l-A_4_7-A_7_7l+A_4_11l-A_5_4-A_8_4l+A_5_8l-A_5_5-A_8_5l+A_5_9l-A_5_6-A_8_6l+A_5_10l-A_5_7-A_8_7l+A_5_11l-A_6_4-A_9_4l+A_6_8l-A_6_5-A_9_5l+A_6_9l-A_6_6-A_9_6l+A_6_10l-A_6_7-A_9_7l+A_6_11lB_4_6+B_8_6l-B_4_12lB_4_7+B_8_7l-B_4_13lB_4_8+B_8_8l-B_4_14lB_4_9+B_8_9l-B_4_15lB_4_10+B_8_10l-B_4_16lB_4_11+B_8_11l-B_4_17lB_5_6+B_9_6l-B_5_12lB_5_7+B_9_7l-B_5_13lB_5_8+B_9_8l-B_5_14lB_5_9+B_9_9l-B_5_15lB_5_10+B_9_10l-B_5_16lB_5_11+B_9_11l-B_5_17lB_6_6+B_10_6l-B_6_12lB_6_7+B_10_7l-B_6_13lB_6_8+B_10_8l-B_6_14lB_6_9+B_10_9l-B_6_15lB_6_10+B_10_10l-B_6_16lB_6_11+B_10_11l-B_6_17lB_7_6+B_11_6l-B_7_12lB_7_7+B_11_7l-B_7_13lB_7_8+B_11_8l-B_7_14lB_7_9+B_11_9l-B_7_15lB_7_10+B_11_10l-B_7_16lB_7_11+B_11_11l-B_7_17lC_6_4+C_12_4l-C_6_7lC_6_5+C_12_5l-C_6_8lC_6_6+C_12_6l-C_6_9lC_7_4+C_13_4l-C_7_7lC_7_5+C_13_5l-C_7_8lC_7_6+C_13_6l-C_7_9lC_8_4+C_14_4l-C_8_7lC_8_5+C_14_5l-C_8_8lC_8_6+C_14_6l-C_8_9lC_9_4+C_15_4l-C_9_7lC_9_5+C_15_5l-C_9_8lC_9_6+C_15_6l-C_9_9lC_10_4+C_16_4l-C_10_7lC_10_5+C_16_5l-C_10_8lC_10_6+C_16_6l-C_10_9lC_11_4+C_17_4l-C_11_7lC_11_5+C_17_5l-C_11_8lC_11_6+C_17_6l-C_11_9l+TraceMul-lA_1_9+A_1_1-lA_1_10+A_1_2-lA_1_11+A_1_3-lA_2_9+A_2_1-lA_2_10+A_2_2-lA_2_11+A_2_3-lA_3_9+A_3_1-lA_3_10+A_3_2-lA_3_11+A_3_3-lB_1_12+B_1_6-lB_1_13+B_1_7-lB_1_14+B_1_8-lB_1_15+B_1_9-lB_1_16+B_1_10-lB_1_17+B_1_11-lB_2_12+B_2_6-lB_2_13+B_2_7-lB_2_14+B_2_8-lB_2_15+B_2_9-lB_2_16+B_2_10-lB_2_17+B_2_11-lB_3_12+B_3_6-lB_3_13+B_3_7-lB_3_14+B_3_8-lB_3_15+B_3_9-lB_3_16+B_3_10-lB_3_17+B_3_11-C_6_7l+C_6_1-C_6_8l+C_6_2-C_6_9l+C_6_3-C_7_7l+C_7_1-C_7_8l+C_7_2-C_7_9l+C_7_3-C_8_7l+C_8_1-C_8_8l+C_8_2-C_8_9l+C_8_3-C_9_7l+C_9_1-C_9_8l+C_9_2-C_9_9l+C_9_3-C_10_7l+C_10_1-C_10_8l+C_10_2-C_10_9l+C_10_3-C_11_7l+C_11_1-C_11_8l+C_11_2-C_11_9l+C_11_3+TraceMulA_1_1+A_7_1lA_1_2+A_7_2lA_1_3+A_7_3lA_2_1+A_8_1lA_2_2+A_8_2lA_2_3+A_8_3lA_3_1+A_9_1lA_3_2+A_9_2lA_3_3+A_9_3lB_1_6+B_9_6lB_1_7+B_9_7lB_1_8+B_9_8lB_1_9+B_9_9lB_1_10+B_9_10lB_1_11+B_9_11lB_2_6+B_10_6lB_2_7+B_10_7lB_2_8+B_10_8lB_2_9+B_10_9lB_2_10+B_10_10lB_2_11+B_10_11lB_3_6+B_11_6lB_3_7+B_11_7lB_3_8+B_11_8lB_3_9+B_11_9lB_3_10+B_11_10lB_3_11+B_11_11lC_6_1+C_12_1lC_6_2+C_12_2lC_6_3+C_12_3lC_7_1+C_13_1lC_7_2+C_13_2lC_7_3+C_13_3lC_8_1+C_14_1lC_8_2+C_14_2lC_8_3+C_14_3lC_9_1+C_15_1lC_9_2+C_15_2lC_9_3+C_15_3lC_10_1+C_16_1lC_10_2+C_16_2lC_10_3+C_16_3lC_11_1+C_17_1lC_11_2+C_17_2lC_11_3+C_17_3l+TraceMulA_1_8A_1_9A_1_10A_1_11A_2_8A_2_9A_2_10A_2_11A_3_8A_3_9A_3_10A_3_11-B_8_6l+B_4_12l+B_8_12-B_4_1-B_8_1l-B_8_7l+B_4_13l+B_8_13-B_4_2-B_8_2l-B_8_8l+B_4_14l+B_8_14-B_4_3-B_8_3l-B_8_9l+B_4_15l+B_8_15-B_4_4-B_8_4l-B_8_10l+B_4_16l+B_8_16-B_4_5-B_8_5l-B_8_11l+B_4_17l+B_8_17-B_1_6-B_9_6l+lB_1_12+B_5_12l+B_9_12-B_5_1-B_9_1l-B_1_7-B_9_7l+lB_1_13+B_5_13l+B_9_13-B_5_2-B_9_2l-B_1_8-B_9_8l+lB_1_14+B_5_14l+B_9_14-B_5_3-B_9_3l-B_1_9-B_9_9l+lB_1_15+B_5_15l+B_9_15-B_5_4-B_9_4l-B_1_10-B_9_10l+lB_1_16+B_5_16l+B_9_16-B_5_5-B_9_5l-B_1_11-B_9_11l+lB_1_17+B_5_17l+B_9_17-B_2_6-B_10_6l+lB_2_12+B_6_12l+B_10_12-B_6_1-B_10_1l-B_2_7-B_10_7l+lB_2_13+B_6_13l+B_10_13-B_6_2-B_10_2l-B_2_8-B_10_8l+lB_2_14+B_6_14l+B_10_14-B_6_3-B_10_3l-B_2_9-B_10_9l+lB_2_15+B_6_15l+B_10_15-B_6_4-B_10_4l-B_2_10-B_10_10l+lB_2_16+B_6_16l+B_10_16-B_6_5-B_10_5l-B_2_11-B_10_11l+lB_2_17+B_6_17l+B_10_17-B_3_6-B_11_6l+lB_3_12+B_7_12l+B_11_12-B_7_1-B_11_1l-B_3_7-B_11_7l+lB_3_13+B_7_13l+B_11_13-B_7_2-B_11_2l-B_3_8-B_11_8l+lB_3_14+B_7_14l+B_11_14-B_7_3-B_11_3l-B_3_9-B_11_9l+lB_3_15+B_7_15l+B_11_15-B_7_4-B_11_4l-B_3_10-B_11_10l+lB_3_16+B_7_16l+B_11_16-B_7_5-B_11_5l-B_3_11-B_11_11l+lB_3_17+B_7_17l+B_11_17C_12_1C_12_2C_12_3C_13_1C_13_2C_13_3C_14_1C_14_2C_14_3C_15_1C_15_2C_15_3C_16_1C_16_2C_16_3C_17_1C_17_2C_17_3+TraceMul-A_7_1-A_7_2-A_7_3-A_8_1-A_8_2-A_8_3-A_9_1-A_9_2-A_9_3B_1_12B_1_13B_1_14B_1_15B_1_16B_1_17B_2_12B_2_13B_2_14B_2_15B_2_16B_2_17B_3_12B_3_13B_3_14B_3_15B_3_16B_3_17C_6_1+C_12_1l+C_12_4l-C_6_7l-C_12_7C_6_2+C_12_2l+C_12_5l-C_6_8l-C_12_8C_6_3+C_12_3l+C_12_6l-C_6_9l-C_12_9C_7_1+C_13_1l+C_1_4+C_13_4l-lC_1_7-C_7_7l-C_13_7C_7_2+C_13_2l+C_1_5+C_13_5l-lC_1_8-C_7_8l-C_13_8C_7_3+C_13_3l+C_1_6+C_13_6l-lC_1_9-C_7_9l-C_13_9C_8_1+C_14_1l+C_2_4+C_14_4l-lC_2_7-C_8_7l-C_14_7C_8_2+C_14_2l+C_2_5+C_14_5l-lC_2_8-C_8_8l-C_14_8C_8_3+C_14_3l+C_2_6+C_14_6l-lC_2_9-C_8_9l-C_14_9C_9_1+C_15_1l+C_3_4+C_15_4l-lC_3_7-C_9_7l-C_15_7C_9_2+C_15_2l+C_3_5+C_15_5l-lC_3_8-C_9_8l-C_15_8C_9_3+C_15_3l+C_3_6+C_15_6l-lC_3_9-C_9_9l-C_15_9C_10_1+C_16_1l+C_4_4+C_16_4l-lC_4_7-C_10_7l-C_16_7C_10_2+C_16_2l+C_4_5+C_16_5l-lC_4_8-C_10_8l-C_16_8C_10_3+C_16_3l+C_4_6+C_16_6l-lC_4_9-C_10_9l-C_16_9C_11_1+C_17_1l+C_5_4+C_17_4l-lC_5_7-C_11_7l-C_17_7C_11_2+C_17_2l+C_5_5+C_17_5l-lC_5_8-C_11_8l-C_17_8C_11_3+C_17_3l+C_5_6+C_17_6l-lC_5_9-C_11_9l-C_17_9+TraceMullA_1_8-A_1_1-A_7_1l+lA_1_9-A_1_2-A_7_2l+lA_1_10-A_1_3-A_7_3l+lA_1_11lA_2_8-A_2_1-A_8_1l+lA_2_9-A_2_2-A_8_2l+lA_2_10-A_2_3-A_8_3l+lA_2_11lA_3_8-A_3_1-A_9_1l+lA_3_9-A_3_2-A_9_2l+lA_3_10-A_3_3-A_9_3l+lA_3_11B_8_6lB_8_7lB_8_8lB_8_9lB_8_10lB_8_11lB_1_6+B_9_6l-lB_1_12B_1_7+B_9_7l-lB_1_13B_1_8+B_9_8l-lB_1_14B_1_9+B_9_9l-lB_1_15B_1_10+B_9_10l-lB_1_16B_1_11+B_9_11l-lB_1_17B_2_6+B_10_6l-lB_2_12B_2_7+B_10_7l-lB_2_13B_2_8+B_10_8l-lB_2_14B_2_9+B_10_9l-lB_2_15B_2_10+B_10_10l-lB_2_16B_2_11+B_10_11l-lB_2_17B_3_6+B_11_6l-lB_3_12B_3_7+B_11_7l-lB_3_13B_3_8+B_11_8l-lB_3_14B_3_9+B_11_9l-lB_3_15B_3_10+B_11_10l-lB_3_16B_3_11+B_11_11l-lB_3_17C_6_1+C_12_1l-C_6_7lC_6_2+C_12_2l-C_6_8lC_6_3+C_12_3l-C_6_9lC_7_1+C_13_1l-C_7_7lC_7_2+C_13_2l-C_7_8lC_7_3+C_13_3l-C_7_9lC_8_1+C_14_1l-C_8_7lC_8_2+C_14_2l-C_8_8lC_8_3+C_14_3l-C_8_9lC_9_1+C_15_1l-C_9_7lC_9_2+C_15_2l-C_9_8lC_9_3+C_15_3l-C_9_9lC_10_1+C_16_1l-C_10_7lC_10_2+C_16_2l-C_10_8lC_10_3+C_16_3l-C_10_9lC_11_1+C_17_1l-C_11_7lC_11_2+C_17_2l-C_11_8lC_11_3+C_17_3l-C_11_9l+TraceMul-A_4_9l+A_4_1-A_4_10l+A_4_2-A_4_11l+A_4_3-A_5_9l+A_5_1-A_5_10l+A_5_2-A_5_11l+A_5_3-A_6_9l+A_6_1-A_6_10l+A_6_2-A_6_11l+A_6_3-lB_1_13+B_1_1-lB_1_14+B_1_2-lB_1_15+B_1_3-lB_1_16+B_1_4-lB_1_17+B_1_5-lB_2_13+B_2_1-lB_2_14+B_2_2-lB_2_15+B_2_3-lB_2_16+B_2_4-lB_2_17+B_2_5-lB_3_13+B_3_1-lB_3_14+B_3_2-lB_3_15+B_3_3-lB_3_16+B_3_4-lB_3_17+B_3_5-lC_1_7+C_1_4-lC_1_8+C_1_5-lC_1_9+C_1_6-lC_2_7+C_2_4-lC_2_8+C_2_5-lC_2_9+C_2_6-lC_3_7+C_3_4-lC_3_8+C_3_5-lC_3_9+C_3_6-lC_4_7+C_4_4-lC_4_8+C_4_5-lC_4_9+C_4_6-lC_5_7+C_5_4-lC_5_8+C_5_5-lC_5_9+C_5_6+TraceMulA_4_1+A_7_1lA_4_2+A_7_2lA_4_3+A_7_3lA_5_1+A_8_1lA_5_2+A_8_2lA_5_3+A_8_3lA_6_1+A_9_1lA_6_2+A_9_2lA_6_3+A_9_3lB_1_1+B_9_1lB_1_2+B_9_2lB_1_3+B_9_3lB_1_4+B_9_4lB_1_5+B_9_5lB_2_1+B_10_1lB_2_2+B_10_2lB_2_3+B_10_3lB_2_4+B_10_4lB_2_5+B_10_5lB_3_1+B_11_1lB_3_2+B_11_2lB_3_3+B_11_3lB_3_4+B_11_4lB_3_5+B_11_5lC_1_4+C_13_4lC_1_5+C_13_5lC_1_6+C_13_6lC_2_4+C_14_4lC_2_5+C_14_5lC_2_6+C_14_6lC_3_4+C_15_4lC_3_5+C_15_5lC_3_6+C_15_6lC_4_4+C_16_4lC_4_5+C_16_5lC_4_6+C_16_6lC_5_4+C_17_4lC_5_5+C_17_5lC_5_6+C_17_6l+TraceMul-A_1_4-A_7_4l+lA_1_8+A_4_8l+A_7_8-A_4_1-A_7_1l-A_1_5-A_7_5l+lA_1_9+A_4_9l+A_7_9-A_4_2-A_7_2l-A_1_6-A_7_6l+lA_1_10+A_4_10l+A_7_10-A_4_3-A_7_3l-A_1_7-A_7_7l+lA_1_11+A_4_11l+A_7_11-A_2_4-A_8_4l+lA_2_8+A_5_8l+A_8_8-A_5_1-A_8_1l-A_2_5-A_8_5l+lA_2_9+A_5_9l+A_8_9-A_5_2-A_8_2l-A_2_6-A_8_6l+lA_2_10+A_5_10l+A_8_10-A_5_3-A_8_3l-A_2_7-A_8_7l+lA_2_11+A_5_11l+A_8_11-A_3_4-A_9_4l+lA_3_8+A_6_8l+A_9_8-A_6_1-A_9_1l-A_3_5-A_9_5l+lA_3_9+A_6_9l+A_9_9-A_6_2-A_9_2l-A_3_6-A_9_6l+lA_3_10+A_6_10l+A_9_10-A_6_3-A_9_3l-A_3_7-A_9_7l+lA_3_11+A_6_11l+A_9_11B_8_1B_8_2B_8_3B_8_4B_8_5B_9_1B_9_2B_9_3B_9_4B_9_5B_10_1B_10_2B_10_3B_10_4B_10_5B_11_1B_11_2B_11_3B_11_4B_11_5C_1_7C_1_8C_1_9C_2_7C_2_8C_2_9C_3_7C_3_8C_3_9C_4_7C_4_8C_4_9C_5_7C_5_8C_5_9+TraceMulA_4_8l-A_4_1-A_7_1l+A_4_9l-A_4_2-A_7_2l+A_4_10l-A_4_3-A_7_3l+A_4_11lA_5_8l-A_5_1-A_8_1l+A_5_9l-A_5_2-A_8_2l+A_5_10l-A_5_3-A_8_3l+A_5_11lA_6_8l-A_6_1-A_9_1l+A_6_9l-A_6_2-A_9_2l+A_6_10l-A_6_3-A_9_3l+A_6_11l0B_8_1lB_8_2lB_8_3lB_8_4lB_8_5l-lB_1_12B_1_1+B_9_1l-lB_1_13B_1_2+B_9_2l-lB_1_14B_1_3+B_9_3l-lB_1_15B_1_4+B_9_4l-lB_1_16B_1_5+B_9_5l-lB_1_17-lB_2_12B_2_1+B_10_1l-lB_2_13B_2_2+B_10_2l-lB_2_14B_2_3+B_10_3l-lB_2_15B_2_4+B_10_4l-lB_2_16B_2_5+B_10_5l-lB_2_17-lB_3_12B_3_1+B_11_1l-lB_3_13B_3_2+B_11_2l-lB_3_14B_3_3+B_11_3l-lB_3_15B_3_4+B_11_4l-lB_3_16B_3_5+B_11_5l-lB_3_17C_12_4lC_12_5lC_12_6lC_1_4+C_13_4l-lC_1_7C_1_5+C_13_5l-lC_1_8C_1_6+C_13_6l-lC_1_9C_2_4+C_14_4l-lC_2_7C_2_5+C_14_5l-lC_2_8C_2_6+C_14_6l-lC_2_9C_3_4+C_15_4l-lC_3_7C_3_5+C_15_5l-lC_3_8C_3_6+C_15_6l-lC_3_9C_4_4+C_16_4l-lC_4_7C_4_5+C_16_5l-lC_4_8C_4_6+C_16_6l-lC_4_9C_5_4+C_17_4l-lC_5_7C_5_5+C_17_5l-lC_5_8C_5_6+C_17_6l-lC_5_9+TraceMul-A_1_4-A_7_4l+lA_1_8-A_1_5-A_7_5l+lA_1_9-A_1_6-A_7_6l+lA_1_10-A_1_7-A_7_7l+lA_1_11-A_2_4-A_8_4l+lA_2_8-A_2_5-A_8_5l+lA_2_9-A_2_6-A_8_6l+lA_2_10-A_2_7-A_8_7l+lA_2_11-A_3_4-A_9_4l+lA_3_8-A_3_5-A_9_5l+lA_3_9-A_3_6-A_9_6l+lA_3_10-A_3_7-A_9_7l+lA_3_11-B_4_12lB_4_1+B_8_1l-B_4_13lB_4_2+B_8_2l-B_4_14lB_4_3+B_8_3l-B_4_15lB_4_4+B_8_4l-B_4_16lB_4_5+B_8_5l-B_4_17l-B_5_12lB_5_1+B_9_1l-B_5_13lB_5_2+B_9_2l-B_5_14lB_5_3+B_9_3l-B_5_15lB_5_4+B_9_4l-B_5_16lB_5_5+B_9_5l-B_5_17l-B_6_12lB_6_1+B_10_1l-B_6_13lB_6_2+B_10_2l-B_6_14lB_6_3+B_10_3l-B_6_15lB_6_4+B_10_4l-B_6_16lB_6_5+B_10_5l-B_6_17l-B_7_12lB_7_1+B_11_1l-B_7_13lB_7_2+B_11_2l-B_7_14lB_7_3+B_11_3l-B_7_15lB_7_4+B_11_4l-B_7_16lB_7_5+B_11_5l-B_7_17lC_12_1lC_12_2lC_12_3lC_1_1+C_13_1l-lC_1_7C_1_2+C_13_2l-lC_1_8C_1_3+C_13_3l-lC_1_9C_2_1+C_14_1l-lC_2_7C_2_2+C_14_2l-lC_2_8C_2_3+C_14_3l-lC_2_9C_3_1+C_15_1l-lC_3_7C_3_2+C_15_2l-lC_3_8C_3_3+C_15_3l-lC_3_9C_4_1+C_16_1l-lC_4_7C_4_2+C_16_2l-lC_4_8C_4_3+C_16_3l-lC_4_9C_5_1+C_17_1l-lC_5_7C_5_2+C_17_2l-lC_5_8C_5_3+C_17_3l-lC_5_9+TraceMul-lA_1_8+A_1_4-lA_1_9+A_1_5-lA_1_10+A_1_6-lA_1_11+A_1_7-lA_2_8+A_2_4-lA_2_9+A_2_5-lA_2_10+A_2_6-lA_2_11+A_2_7-lA_3_8+A_3_4-lA_3_9+A_3_5-lA_3_10+A_3_6-lA_3_11+A_3_7-B_4_13l+B_4_1-B_4_14l+B_4_2-B_4_15l+B_4_3-B_4_16l+B_4_4-B_4_17l+B_4_5-B_5_13l+B_5_1-B_5_14l+B_5_2-B_5_15l+B_5_3-B_5_16l+B_5_4-B_5_17l+B_5_5-B_6_13l+B_6_1-B_6_14l+B_6_2-B_6_15l+B_6_3-B_6_16l+B_6_4-B_6_17l+B_6_5-B_7_13l+B_7_1-B_7_14l+B_7_2-B_7_15l+B_7_3-B_7_16l+B_7_4-B_7_17l+B_7_5-lC_1_7+C_1_1-lC_1_8+C_1_2-lC_1_9+C_1_3-lC_2_7+C_2_1-lC_2_8+C_2_2-lC_2_9+C_2_3-lC_3_7+C_3_1-lC_3_8+C_3_2-lC_3_9+C_3_3-lC_4_7+C_4_1-lC_4_8+C_4_2-lC_4_9+C_4_3-lC_5_7+C_5_1-lC_5_8+C_5_2-lC_5_9+C_5_3+TraceMulA_1_4+A_7_4lA_1_5+A_7_5lA_1_6+A_7_6lA_1_7+A_7_7lA_2_4+A_8_4lA_2_5+A_8_5lA_2_6+A_8_6lA_2_7+A_8_7lA_3_4+A_9_4lA_3_5+A_9_5lA_3_6+A_9_6lA_3_7+A_9_7lB_4_1+B_8_1lB_4_2+B_8_2lB_4_3+B_8_3lB_4_4+B_8_4lB_4_5+B_8_5lB_5_1+B_9_1lB_5_2+B_9_2lB_5_3+B_9_3lB_5_4+B_9_4lB_5_5+B_9_5lB_6_1+B_10_1lB_6_2+B_10_2lB_6_3+B_10_3lB_6_4+B_10_4lB_6_5+B_10_5lB_7_1+B_11_1lB_7_2+B_11_2lB_7_3+B_11_3lB_7_4+B_11_4lB_7_5+B_11_5lC_1_1+C_13_1lC_1_2+C_13_2lC_1_3+C_13_3lC_2_1+C_14_1lC_2_2+C_14_2lC_2_3+C_14_3lC_3_1+C_15_1lC_3_2+C_15_2lC_3_3+C_15_3lC_4_1+C_16_1lC_4_2+C_16_2lC_4_3+C_16_3lC_5_1+C_17_1lC_5_2+C_17_2lC_5_3+C_17_3l+TraceMulA_4_4A_4_5A_4_6A_4_7A_5_4A_5_5A_5_6A_5_7A_6_4A_6_5A_6_6A_6_7B_4_1B_4_2B_4_3B_4_4B_4_5B_5_1B_5_2B_5_3B_5_4B_5_5B_6_1B_6_2B_6_3B_6_4B_6_5B_7_1B_7_2B_7_3B_7_4B_7_5C_1_4C_1_5C_1_6C_2_4C_2_5C_2_6C_3_4C_3_5C_3_6C_4_4C_4_5C_4_6C_5_4C_5_5C_5_6+TraceMulA_4_1A_4_2A_4_3A_5_1A_5_2A_5_3A_6_1A_6_2A_6_3B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11C_6_4C_6_5C_6_6C_7_4C_7_5C_7_6C_8_4C_8_5C_8_6C_9_4C_9_5C_9_6C_10_4C_10_5C_10_6C_11_4C_11_5C_11_6+TraceMulA_1_1A_1_2A_1_3A_2_1A_2_2A_2_3A_3_1A_3_2A_3_3B_1_1B_1_2B_1_3B_1_4B_1_5B_2_1B_2_2B_2_3B_2_4B_2_5B_3_1B_3_2B_3_3B_3_4B_3_5C_1_1C_1_2C_1_3C_2_1C_2_2C_2_3C_3_1C_3_2C_3_3C_4_1C_4_2C_4_3C_5_1C_5_2C_5_3+TraceMulA_1_4A_1_5A_1_6A_1_7A_2_4A_2_5A_2_6A_2_7A_3_4A_3_5A_3_6A_3_7B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11B_7_6B_7_7B_7_8B_7_9B_7_10B_7_11C_6_1C_6_2C_6_3C_7_1C_7_2C_7_3C_8_1C_8_2C_8_3C_9_1C_9_2C_9_3C_10_1C_10_2C_10_3C_11_1C_11_2C_11_3

N.B.: for any matrices A, B and C such that the expression Tr(Mul(A,B,C)) is defined, one can construct several trilinear homogeneous polynomials P(A,B,C) such that P(A,B,C)=Tr(Mul(A,B,C)) (P(A,B,C) variables are A,B and C's coefficients). Each trilinear P expression encodes a matrix multiplication algorithm: the coefficient in C_i_j of P(A,B,C) is the (i,j)-th entry of the matrix product Mul(A,B)=Transpose(C).

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table