Description of fast matrix multiplication algorithm: ⟨9×10×21:1185⟩

Algorithm type

6X4Y6Z4+72X4Y4Z4+6X2Y8Z2+6X6Y2Z2+12X2Y6Z2+18X2Y4Z4+21X2Y2Z6+12X2Y3Z4+6X4Y2Z2+42X2Y4Z2+180X2Y2Z4+42XYZ6+12X2Y3Z2+12XY4Z2+36XY2Z4+12X3YZ2+156X2Y2Z2+12XY4Z+24XY3Z2+72XYZ4+12X3YZ+12X2YZ2+24XY3Z+120XY2Z2+42XYZ3+12X2YZ+84XY2Z+96XYZ2+24XYZ6X4Y6Z472X4Y4Z46X2Y8Z26X6Y2Z212X2Y6Z218X2Y4Z421X2Y2Z612X2Y3Z46X4Y2Z242X2Y4Z2180X2Y2Z442XYZ612X2Y3Z212XY4Z236XY2Z412X3YZ2156X2Y2Z212XY4Z24XY3Z272XYZ412X3YZ12X2YZ224XY3Z120XY2Z242XYZ312X2YZ84XY2Z96XYZ224XYZ6*X^4*Y^6*Z^4+72*X^4*Y^4*Z^4+6*X^2*Y^8*Z^2+6*X^6*Y^2*Z^2+12*X^2*Y^6*Z^2+18*X^2*Y^4*Z^4+21*X^2*Y^2*Z^6+12*X^2*Y^3*Z^4+6*X^4*Y^2*Z^2+42*X^2*Y^4*Z^2+180*X^2*Y^2*Z^4+42*X*Y*Z^6+12*X^2*Y^3*Z^2+12*X*Y^4*Z^2+36*X*Y^2*Z^4+12*X^3*Y*Z^2+156*X^2*Y^2*Z^2+12*X*Y^4*Z+24*X*Y^3*Z^2+72*X*Y*Z^4+12*X^3*Y*Z+12*X^2*Y*Z^2+24*X*Y^3*Z+120*X*Y^2*Z^2+42*X*Y*Z^3+12*X^2*Y*Z+84*X*Y^2*Z+96*X*Y*Z^2+24*X*Y*Z

Algorithm definition

The algorithm ⟨9×10×21:1185⟩ is the (Kronecker) tensor product of ⟨3×2×3:15⟩ with ⟨3×5×7:79⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table