Description of fast matrix multiplication algorithm: ⟨9×10×20:1160⟩

Algorithm type

4X6Y4Z2+68X4Y4Z4+8X2Y8Z2+4X2Y4Z6+4XY2Z9+20XYZ9+20X6Y2Z2+8X4Y4Z2+4X2Y6Z2+8X2Y4Z4+88X2Y2Z6+8XY2Z6+4X4Y2Z2+4X3Y2Z3+52X2Y4Z2+4X2Y2Z4+8XY4Z3+4XYZ6+20X3YZ3+8X2Y2Z3+4XY3Z3+12X3Y2Z+232X2Y2Z2+4X2YZ3+24XY4Z+64XY2Z3+60X3YZ+24X2Y2Z+12XY3Z+24XY2Z2+88XYZ3+12X2YZ+156XY2Z+12XYZ2+84XYZ4X6Y4Z268X4Y4Z48X2Y8Z24X2Y4Z64XY2Z920XYZ920X6Y2Z28X4Y4Z24X2Y6Z28X2Y4Z488X2Y2Z68XY2Z64X4Y2Z24X3Y2Z352X2Y4Z24X2Y2Z48XY4Z34XYZ620X3YZ38X2Y2Z34XY3Z312X3Y2Z232X2Y2Z24X2YZ324XY4Z64XY2Z360X3YZ24X2Y2Z12XY3Z24XY2Z288XYZ312X2YZ156XY2Z12XYZ284XYZ4*X^6*Y^4*Z^2+68*X^4*Y^4*Z^4+8*X^2*Y^8*Z^2+4*X^2*Y^4*Z^6+4*X*Y^2*Z^9+20*X*Y*Z^9+20*X^6*Y^2*Z^2+8*X^4*Y^4*Z^2+4*X^2*Y^6*Z^2+8*X^2*Y^4*Z^4+88*X^2*Y^2*Z^6+8*X*Y^2*Z^6+4*X^4*Y^2*Z^2+4*X^3*Y^2*Z^3+52*X^2*Y^4*Z^2+4*X^2*Y^2*Z^4+8*X*Y^4*Z^3+4*X*Y*Z^6+20*X^3*Y*Z^3+8*X^2*Y^2*Z^3+4*X*Y^3*Z^3+12*X^3*Y^2*Z+232*X^2*Y^2*Z^2+4*X^2*Y*Z^3+24*X*Y^4*Z+64*X*Y^2*Z^3+60*X^3*Y*Z+24*X^2*Y^2*Z+12*X*Y^3*Z+24*X*Y^2*Z^2+88*X*Y*Z^3+12*X^2*Y*Z+156*X*Y^2*Z+12*X*Y*Z^2+84*X*Y*Z

Algorithm definition

The algorithm ⟨9×10×20:1160⟩ is the (Kronecker) tensor product of ⟨3×2×4:20⟩ with ⟨3×5×5:58⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table