Description of fast matrix multiplication algorithm: ⟨9×10×18:1020⟩

Algorithm type

6X4Y6Z4+6X6Y2Z4+54X4Y4Z4+6X4Y2Z6+6X2Y8Z2+9X2Y4Z6+18X6Y2Z2+12X4Y4Z2+15X2Y6Z2+12X2Y2Z6+12X2Y3Z4+12X2YZ6+18XY2Z6+24X4Y2Z2+12X3YZ4+24X2Y4Z2+108X2Y2Z4+24XYZ6+12X2Y3Z2+12XY4Z2+48X3YZ2+144X2Y2Z2+12X2YZ3+12XY4Z+30XY3Z2+18XY2Z3+36X3YZ+24X2Y2Z+48X2YZ2+30XY3Z+48XY2Z2+24XYZ3+48X2YZ+48XY2Z+24XYZ2+24XYZ6X4Y6Z46X6Y2Z454X4Y4Z46X4Y2Z66X2Y8Z29X2Y4Z618X6Y2Z212X4Y4Z215X2Y6Z212X2Y2Z612X2Y3Z412X2YZ618XY2Z624X4Y2Z212X3YZ424X2Y4Z2108X2Y2Z424XYZ612X2Y3Z212XY4Z248X3YZ2144X2Y2Z212X2YZ312XY4Z30XY3Z218XY2Z336X3YZ24X2Y2Z48X2YZ230XY3Z48XY2Z224XYZ348X2YZ48XY2Z24XYZ224XYZ6*X^4*Y^6*Z^4+6*X^6*Y^2*Z^4+54*X^4*Y^4*Z^4+6*X^4*Y^2*Z^6+6*X^2*Y^8*Z^2+9*X^2*Y^4*Z^6+18*X^6*Y^2*Z^2+12*X^4*Y^4*Z^2+15*X^2*Y^6*Z^2+12*X^2*Y^2*Z^6+12*X^2*Y^3*Z^4+12*X^2*Y*Z^6+18*X*Y^2*Z^6+24*X^4*Y^2*Z^2+12*X^3*Y*Z^4+24*X^2*Y^4*Z^2+108*X^2*Y^2*Z^4+24*X*Y*Z^6+12*X^2*Y^3*Z^2+12*X*Y^4*Z^2+48*X^3*Y*Z^2+144*X^2*Y^2*Z^2+12*X^2*Y*Z^3+12*X*Y^4*Z+30*X*Y^3*Z^2+18*X*Y^2*Z^3+36*X^3*Y*Z+24*X^2*Y^2*Z+48*X^2*Y*Z^2+30*X*Y^3*Z+48*X*Y^2*Z^2+24*X*Y*Z^3+48*X^2*Y*Z+48*X*Y^2*Z+24*X*Y*Z^2+24*X*Y*Z

Algorithm definition

The algorithm ⟨9×10×18:1020⟩ is the (Kronecker) tensor product of ⟨3×2×3:15⟩ with ⟨3×5×6:68⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table