Description of fast matrix multiplication algorithm: ⟨8×9×15:705⟩

Algorithm type

39X4Y4Z4+9X6Y2Z2+3X4Y2Z4+12X2Y6Z2+6X2Y4Z4+6X2Y2Z6+9X4Y2Z2+96X2Y4Z2+24X2Y2Z4+24XY6Z+12XY4Z2+18X3Y2Z+99X2Y2Z2+36XY4Z+12XY2Z3+18X3YZ+18X2Y2Z+6X2YZ2+24XY3Z+60XY2Z2+12XYZ3+18X2YZ+66XY2Z+48XYZ2+30XYZ39X4Y4Z49X6Y2Z23X4Y2Z412X2Y6Z26X2Y4Z46X2Y2Z69X4Y2Z296X2Y4Z224X2Y2Z424XY6Z12XY4Z218X3Y2Z99X2Y2Z236XY4Z12XY2Z318X3YZ18X2Y2Z6X2YZ224XY3Z60XY2Z212XYZ318X2YZ66XY2Z48XYZ230XYZ39*X^4*Y^4*Z^4+9*X^6*Y^2*Z^2+3*X^4*Y^2*Z^4+12*X^2*Y^6*Z^2+6*X^2*Y^4*Z^4+6*X^2*Y^2*Z^6+9*X^4*Y^2*Z^2+96*X^2*Y^4*Z^2+24*X^2*Y^2*Z^4+24*X*Y^6*Z+12*X*Y^4*Z^2+18*X^3*Y^2*Z+99*X^2*Y^2*Z^2+36*X*Y^4*Z+12*X*Y^2*Z^3+18*X^3*Y*Z+18*X^2*Y^2*Z+6*X^2*Y*Z^2+24*X*Y^3*Z+60*X*Y^2*Z^2+12*X*Y*Z^3+18*X^2*Y*Z+66*X*Y^2*Z+48*X*Y*Z^2+30*X*Y*Z

Algorithm definition

The algorithm ⟨8×9×15:705⟩ is the (Kronecker) tensor product of ⟨2×3×3:15⟩ with ⟨4×3×5:47⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table