Description of fast matrix multiplication algorithm: ⟨8×9×14:669⟩

Algorithm type

29X4Y4Z4+2X4Y3Z4+9X6Y2Z2+8X4Y3Z3+3X4Y2Z4+8X2Y6Z2+4X2Y4Z4+4X2Y2Z6+4X2Y5Z2+2X2Y2Z5+5X4Y2Z2+72X2Y4Z2+2X2Y3Z3+18X2Y2Z4+18XY6Z+2X4Y2Z+16X2Y3Z2+4X2Y2Z3+4XY5Z+10XY4Z2+2X4YZ+18X3Y2Z+2X2Y3Z+93X2Y2Z2+2X2YZ3+18XY4Z+2XY3Z2+12XY2Z3+18X3YZ+12X2Y2Z+10X2YZ2+30XY3Z+64XY2Z2+12XYZ3+16X2YZ+50XY2Z+56XYZ2+28XYZ29X4Y4Z42X4Y3Z49X6Y2Z28X4Y3Z33X4Y2Z48X2Y6Z24X2Y4Z44X2Y2Z64X2Y5Z22X2Y2Z55X4Y2Z272X2Y4Z22X2Y3Z318X2Y2Z418XY6Z2X4Y2Z16X2Y3Z24X2Y2Z34XY5Z10XY4Z22X4YZ18X3Y2Z2X2Y3Z93X2Y2Z22X2YZ318XY4Z2XY3Z212XY2Z318X3YZ12X2Y2Z10X2YZ230XY3Z64XY2Z212XYZ316X2YZ50XY2Z56XYZ228XYZ29*X^4*Y^4*Z^4+2*X^4*Y^3*Z^4+9*X^6*Y^2*Z^2+8*X^4*Y^3*Z^3+3*X^4*Y^2*Z^4+8*X^2*Y^6*Z^2+4*X^2*Y^4*Z^4+4*X^2*Y^2*Z^6+4*X^2*Y^5*Z^2+2*X^2*Y^2*Z^5+5*X^4*Y^2*Z^2+72*X^2*Y^4*Z^2+2*X^2*Y^3*Z^3+18*X^2*Y^2*Z^4+18*X*Y^6*Z+2*X^4*Y^2*Z+16*X^2*Y^3*Z^2+4*X^2*Y^2*Z^3+4*X*Y^5*Z+10*X*Y^4*Z^2+2*X^4*Y*Z+18*X^3*Y^2*Z+2*X^2*Y^3*Z+93*X^2*Y^2*Z^2+2*X^2*Y*Z^3+18*X*Y^4*Z+2*X*Y^3*Z^2+12*X*Y^2*Z^3+18*X^3*Y*Z+12*X^2*Y^2*Z+10*X^2*Y*Z^2+30*X*Y^3*Z+64*X*Y^2*Z^2+12*X*Y*Z^3+16*X^2*Y*Z+50*X*Y^2*Z+56*X*Y*Z^2+28*X*Y*Z

Algorithm definition

The algorithm ⟨8×9×14:669⟩ could be constructed using the following decomposition:

⟨8×9×14:669⟩ = ⟨4×3×4:38⟩ + ⟨4×3×5:47⟩ + ⟨4×3×5:47⟩ + ⟨4×3×5:47⟩ + ⟨4×3×5:47⟩ + ⟨4×3×5:47⟩ + ⟨4×3×4:38⟩ + ⟨4×3×5:47⟩ + ⟨4×3×4:38⟩ + ⟨4×3×5:47⟩ + ⟨4×3×5:47⟩ + ⟨4×3×5:47⟩ + ⟨4×3×5:47⟩ + ⟨4×3×5:47⟩ + ⟨4×3×4:38⟩.

This decomposition is defined by the following equality:

TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_1_8A_1_9A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_2_8A_2_9A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_3_8A_3_9A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_4_8A_4_9A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7A_5_8A_5_9A_6_1A_6_2A_6_3A_6_4A_6_5A_6_6A_6_7A_6_8A_6_9A_7_1A_7_2A_7_3A_7_4A_7_5A_7_6A_7_7A_7_8A_7_9A_8_1A_8_2A_8_3A_8_4A_8_5A_8_6A_8_7A_8_8A_8_9B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_1_12B_1_13B_1_14B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_2_12B_2_13B_2_14B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_3_12B_3_13B_3_14B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_4_12B_4_13B_4_14B_5_1B_5_2B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_5_12B_5_13B_5_14B_6_1B_6_2B_6_3B_6_4B_6_5B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11B_6_12B_6_13B_6_14B_7_1B_7_2B_7_3B_7_4B_7_5B_7_6B_7_7B_7_8B_7_9B_7_10B_7_11B_7_12B_7_13B_7_14B_8_1B_8_2B_8_3B_8_4B_8_5B_8_6B_8_7B_8_8B_8_9B_8_10B_8_11B_8_12B_8_13B_8_14B_9_1B_9_2B_9_3B_9_4B_9_5B_9_6B_9_7B_9_8B_9_9B_9_10B_9_11B_9_12B_9_13B_9_14C_1_1C_1_2C_1_3C_1_4C_1_5C_1_6C_1_7C_1_8C_2_1C_2_2C_2_3C_2_4C_2_5C_2_6C_2_7C_2_8C_3_1C_3_2C_3_3C_3_4C_3_5C_3_6C_3_7C_3_8C_4_1C_4_2C_4_3C_4_4C_4_5C_4_6C_4_7C_4_8C_5_1C_5_2C_5_3C_5_4C_5_5C_5_6C_5_7C_5_8C_6_1C_6_2C_6_3C_6_4C_6_5C_6_6C_6_7C_6_8C_7_1C_7_2C_7_3C_7_4C_7_5C_7_6C_7_7C_7_8C_8_1C_8_2C_8_3C_8_4C_8_5C_8_6C_8_7C_8_8C_9_1C_9_2C_9_3C_9_4C_9_5C_9_6C_9_7C_9_8C_10_1C_10_2C_10_3C_10_4C_10_5C_10_6C_10_7C_10_8C_11_1C_11_2C_11_3C_11_4C_11_5C_11_6C_11_7C_11_8C_12_1C_12_2C_12_3C_12_4C_12_5C_12_6C_12_7C_12_8C_13_1C_13_2C_13_3C_13_4C_13_5C_13_6C_13_7C_13_8C_14_1C_14_2C_14_3C_14_4C_14_5C_14_6C_14_7C_14_8=TraceMulA_5_1A_5_2A_5_3A_6_1A_6_2A_6_3A_7_1A_7_2A_7_3A_8_1A_8_2A_8_3B_1_1-B_4_1-B_1_11B_1_2-B_4_2-B_1_12B_1_3-B_4_3-B_1_13B_1_4-B_4_4-B_1_14B_2_1-B_5_1-B_2_11B_2_2-B_5_2-B_2_12B_2_3-B_5_3-B_2_13B_2_4-B_5_4-B_2_14-B_6_1+B_3_1-B_3_11B_3_2-B_6_2-B_3_12B_3_3-B_6_3-B_3_13B_3_4-B_6_4-B_3_14C_1_1+C_1_5C_1_2+C_1_6C_1_3+C_1_7C_1_4+C_1_8C_2_1+C_2_5C_2_2+C_2_6C_2_3+C_2_7C_2_4+C_2_8C_3_1+C_3_5C_3_2+C_3_6C_3_3+C_3_7C_3_4+C_3_8C_4_1+C_4_5C_4_2+C_4_6C_4_3+C_4_7C_4_4+C_4_8+TraceMulA_1_4A_1_5A_1_6A_2_4A_2_5A_2_6A_3_4A_3_5A_3_6A_4_4A_4_5A_4_6-B_1_5+B_4_5-B_4_10-B_1_6+B_4_6-B_4_11-B_1_7+B_4_7-B_4_12-B_1_8+B_4_8-B_4_13-B_1_9+B_4_9-B_4_14-B_2_5+B_5_5-B_5_10-B_2_6+B_5_6-B_5_11-B_2_7+B_5_7-B_5_12-B_2_8+B_5_8-B_5_13-B_2_9+B_5_9-B_5_14-B_3_5+B_6_5-B_6_10-B_3_6+B_6_6-B_6_11-B_3_7+B_6_7-B_6_12-B_3_8+B_6_8-B_6_13-B_3_9+B_6_9-B_6_14C_5_1+C_5_5C_5_2+C_5_6C_5_3+C_5_7C_5_4+C_5_8C_6_1+C_6_5C_6_2+C_6_6C_6_3+C_6_7C_6_4+C_6_8C_7_1+C_7_5C_7_2+C_7_6C_7_3+C_7_7C_7_4+C_7_8C_8_1+C_8_5C_8_2+C_8_6C_8_3+C_8_7C_8_4+C_8_8C_9_1+C_9_5C_9_2+C_9_6C_9_3+C_9_7C_9_4+C_9_8+TraceMulA_1_7A_1_8A_1_9A_2_7A_2_8A_2_9A_3_7A_3_8A_3_9A_4_7A_4_8A_4_9-B_7_5-B_1_10+B_7_10-B_7_6-B_1_11+B_7_11-B_7_7-B_1_12+B_7_12-B_7_8-B_1_13+B_7_13-B_7_9-B_1_14+B_7_14-B_8_5-B_2_10+B_8_10-B_8_6-B_2_11+B_8_11-B_8_7-B_2_12+B_8_12-B_8_8-B_2_13+B_8_13-B_8_9-B_2_14+B_8_14-B_9_5-B_3_10+B_9_10-B_9_6-B_3_11+B_9_11-B_9_7-B_3_12+B_9_12-B_9_8-B_3_13+B_9_13-B_9_9-B_3_14+B_9_14C_10_1C_10_2C_10_3C_10_4C_11_1C_11_2C_11_3C_11_4C_12_1C_12_2C_12_3C_12_4C_13_1C_13_2C_13_3C_13_4C_14_1C_14_2C_14_3C_14_4+TraceMulA_5_7A_5_8A_5_9A_6_7A_6_8A_6_9A_7_7A_7_8A_7_9A_8_7A_8_8A_8_9-B_4_10+B_7_10-B_7_1-B_4_11+B_7_11-B_7_2-B_4_12+B_7_12-B_7_3-B_4_13+B_7_13-B_7_4-B_4_14+B_7_14-B_5_10+B_8_10-B_8_1-B_5_11+B_8_11-B_8_2-B_5_12+B_8_12-B_8_3-B_5_13+B_8_13-B_8_4-B_5_14+B_8_14-B_6_10+B_9_10-B_9_1-B_6_11+B_9_11-B_9_2-B_6_12+B_9_12-B_9_3-B_6_13+B_9_13-B_9_4-B_6_14+B_9_14C_10_5C_10_6C_10_7C_10_8C_11_5C_11_6C_11_7C_11_8C_12_5C_12_6C_12_7C_12_8C_13_5C_13_6C_13_7C_13_8C_14_5C_14_6C_14_7C_14_8+TraceMulA_1_1+A_1_4A_1_2+A_1_5A_1_3+A_1_6A_2_1+A_2_4A_2_2+A_2_5A_2_3+A_2_6A_3_1+A_3_4A_3_2+A_3_5A_3_3+A_3_6A_4_1+A_4_4A_4_2+A_4_5A_4_3+A_4_6B_1_5B_1_6B_1_7B_1_8B_1_9B_2_5B_2_6B_2_7B_2_8B_2_9B_3_5B_3_6B_3_7B_3_8B_3_9C_5_1C_5_2C_5_3C_5_4C_1_1+C_6_1C_1_2+C_6_2C_1_3+C_6_3C_1_4+C_6_4C_2_1+C_7_1C_2_2+C_7_2C_2_3+C_7_3C_2_4+C_7_4C_3_1+C_8_1C_3_2+C_8_2C_3_3+C_8_3C_3_4+C_8_4C_4_1+C_9_1C_4_2+C_9_2C_4_3+C_9_3C_4_4+C_9_4+TraceMulA_1_1+A_1_7A_1_2+A_1_8A_1_3+A_1_9A_2_1+A_2_7A_2_2+A_2_8A_2_3+A_2_9A_3_1+A_3_7A_3_2+A_3_8A_3_3+A_3_9A_4_1+A_4_7A_4_2+A_4_8A_4_3+A_4_9B_1_10B_1_11B_1_12B_1_13B_1_14B_2_10B_2_11B_2_12B_2_13B_2_14B_3_10B_3_11B_3_12B_3_13B_3_14C_10_1+C_10_5C_10_2+C_10_6C_10_3+C_10_7C_10_4+C_10_8C_1_1+C_11_1+C_1_5+C_11_5C_1_2+C_11_2+C_1_6+C_11_6C_1_3+C_11_3+C_1_7+C_11_7C_1_4+C_11_4+C_1_8+C_11_8C_2_1+C_12_1+C_2_5+C_12_5C_2_2+C_12_2+C_2_6+C_12_6C_2_3+C_12_3+C_2_7+C_12_7C_2_4+C_12_4+C_2_8+C_12_8C_3_1+C_13_1+C_3_5+C_13_5C_3_2+C_13_2+C_3_6+C_13_6C_3_3+C_13_3+C_3_7+C_13_7C_3_4+C_13_4+C_3_8+C_13_8C_4_1+C_14_1+C_4_5+C_14_5C_4_2+C_14_2+C_4_6+C_14_6C_4_3+C_14_3+C_4_7+C_14_7C_4_4+C_14_4+C_4_8+C_14_8+TraceMulA_1_1-A_5_1A_1_2-A_5_2A_1_3-A_5_3A_2_1-A_6_1A_2_2-A_6_2A_2_3-A_6_3A_3_1-A_7_1A_3_2-A_7_2A_3_3-A_7_3A_4_1-A_8_1A_4_2-A_8_2A_4_3-A_8_3B_1_1-B_7_1-B_1_6B_1_2-B_7_2-B_1_7B_1_3-B_7_3-B_1_8B_1_4-B_7_4-B_1_9B_2_1-B_8_1-B_2_6B_2_2-B_8_2-B_2_7B_2_3-B_8_3-B_2_8B_2_4-B_8_4-B_2_9B_3_1-B_9_1-B_3_6B_3_2-B_9_2-B_3_7B_3_3-B_9_3-B_3_8B_3_4-B_9_4-B_3_9C_1_1C_1_2C_1_3C_1_4C_2_1C_2_2C_2_3C_2_4C_3_1C_3_2C_3_3C_3_4C_4_1C_4_2C_4_3C_4_4+TraceMulA_5_1+A_1_4A_1_5+A_5_2A_5_3+A_1_6A_6_1+A_2_4A_2_5+A_6_2A_2_6+A_6_3A_7_1+A_3_4A_3_5+A_7_2A_3_6+A_7_3A_8_1+A_4_4A_4_5+A_8_2A_8_3+A_4_6-B_1_5B_4_1-B_1_6B_4_2-B_1_7B_4_3-B_1_8B_4_4-B_1_9-B_2_5B_5_1-B_2_6B_5_2-B_2_7B_5_3-B_2_8B_5_4-B_2_9-B_3_5B_6_1-B_3_6B_6_2-B_3_7B_6_3-B_3_8B_6_4-B_3_9-C_5_5-C_5_6-C_5_7-C_5_8C_1_1-C_6_5C_1_2-C_6_6C_1_3-C_6_7C_1_4-C_6_8C_2_1-C_7_5C_2_2-C_7_6C_2_3-C_7_7C_2_4-C_7_8C_3_1-C_8_5C_3_2-C_8_6C_3_3-C_8_7C_3_4-C_8_8C_4_1-C_9_5C_4_2-C_9_6C_4_3-C_9_7C_4_4-C_9_8+TraceMulA_5_1+A_5_4A_5_2+A_5_5A_5_3+A_5_6A_6_1+A_6_4A_6_2+A_6_5A_6_3+A_6_6A_7_1+A_7_4A_7_2+A_7_5A_7_3+A_7_6A_8_1+A_8_4A_8_2+A_8_5A_8_3+A_8_6B_4_1B_4_2B_4_3B_4_4B_5_1B_5_2B_5_3B_5_4B_6_1B_6_2B_6_3B_6_4C_1_5+C_6_5C_1_6+C_6_6C_1_7+C_6_7C_1_8+C_6_8C_2_5+C_7_5C_2_6+C_7_6C_2_7+C_7_7C_2_8+C_7_8C_3_5+C_8_5C_3_6+C_8_6C_3_7+C_8_7C_3_8+C_8_8C_4_5+C_9_5C_4_6+C_9_6C_4_7+C_9_7C_4_8+C_9_8+TraceMulA_1_4-A_5_4A_1_5-A_5_5A_1_6-A_5_6A_2_4-A_6_4A_2_5-A_6_5A_2_6-A_6_6A_3_4-A_7_4A_3_5-A_7_5A_3_6-A_7_6A_4_4-A_8_4A_4_5-A_8_5A_4_6-A_8_6-B_4_5+B_7_5B_4_1-B_4_6+B_7_6B_4_2-B_4_7+B_7_7B_4_3-B_4_8+B_7_8B_4_4-B_4_9+B_7_9-B_5_5+B_8_5B_5_1-B_5_6+B_8_6B_5_2-B_5_7+B_8_7B_5_3-B_5_8+B_8_8B_5_4-B_5_9+B_8_9-B_6_5+B_9_5B_6_1-B_6_6+B_9_6B_6_2-B_6_7+B_9_7B_6_3-B_6_8+B_9_8B_6_4-B_6_9+B_9_9C_5_5C_5_6C_5_7C_5_8C_6_5C_6_6C_6_7C_6_8C_7_5C_7_6C_7_7C_7_8C_8_5C_8_6C_8_7C_8_8C_9_5C_9_6C_9_7C_9_8+TraceMulA_5_4+A_5_7A_5_5+A_5_8A_5_6+A_5_9A_6_4+A_6_7A_6_5+A_6_8A_6_6+A_6_9A_7_4+A_7_7A_7_5+A_7_8A_7_6+A_7_9A_8_4+A_8_7A_8_5+A_8_8A_8_6+A_8_9B_4_10B_4_11B_4_12B_4_13B_4_14B_5_10B_5_11B_5_12B_5_13B_5_14B_6_10B_6_11B_6_12B_6_13B_6_14C_5_1+C_10_1+C_5_5+C_10_5C_5_2+C_10_2+C_5_6+C_10_6C_5_3+C_10_3+C_5_7+C_10_7C_5_4+C_10_4+C_5_8+C_10_8C_6_1+C_11_1+C_6_5+C_11_5C_6_2+C_11_2+C_6_6+C_11_6C_6_3+C_11_3+C_6_7+C_11_7C_6_4+C_11_4+C_6_8+C_11_8C_7_1+C_12_1+C_7_5+C_12_5C_7_2+C_12_2+C_7_6+C_12_6C_7_3+C_12_3+C_7_7+C_12_7C_7_4+C_12_4+C_7_8+C_12_8C_8_1+C_13_1+C_8_5+C_13_5C_8_2+C_13_2+C_8_6+C_13_6C_8_3+C_13_3+C_8_7+C_13_7C_8_4+C_13_4+C_8_8+C_13_8C_9_1+C_14_1+C_9_5+C_14_5C_9_2+C_14_2+C_9_6+C_14_6C_9_3+C_14_3+C_9_7+C_14_7C_9_4+C_14_4+C_9_8+C_14_8+TraceMulA_1_1-A_5_1+A_1_7A_1_2-A_5_2+A_1_8A_1_3-A_5_3+A_1_9A_2_1-A_6_1+A_2_7A_2_2-A_6_2+A_2_8A_2_3-A_6_3+A_2_9A_3_1-A_7_1+A_3_7A_3_2-A_7_2+A_3_8A_3_3-A_7_3+A_3_9A_4_1-A_8_1+A_4_7A_4_2-A_8_2+A_4_8A_4_3-A_8_3+A_4_9-B_1_10B_7_1-B_1_11B_7_2-B_1_12B_7_3-B_1_13B_7_4-B_1_14-B_2_10B_8_1-B_2_11B_8_2-B_2_12B_8_3-B_2_13B_8_4-B_2_14-B_3_10B_9_1-B_3_11B_9_2-B_3_12B_9_3-B_3_13B_9_4-B_3_14C_10_5C_10_6C_10_7C_10_8C_1_1+C_1_5+C_11_5C_1_2+C_1_6+C_11_6C_1_3+C_1_7+C_11_7C_1_4+C_1_8+C_11_8C_2_1+C_2_5+C_12_5C_2_2+C_2_6+C_12_6C_2_3+C_2_7+C_12_7C_2_4+C_2_8+C_12_8C_3_1+C_3_5+C_13_5C_3_2+C_3_6+C_13_6C_3_3+C_3_7+C_13_7C_3_4+C_3_8+C_13_8C_4_1+C_4_5+C_14_5C_4_2+C_4_6+C_14_6C_4_3+C_4_7+C_14_7C_4_4+C_4_8+C_14_8+TraceMulA_1_4-A_5_4-A_5_7A_1_5-A_5_5-A_5_8A_1_6-A_5_6-A_5_9A_2_4-A_6_4-A_6_7A_2_5-A_6_5-A_6_8A_2_6-A_6_6-A_6_9A_3_4-A_7_4-A_7_7A_3_5-A_7_5-A_7_8A_3_6-A_7_6-A_7_9A_4_4-A_8_4-A_8_7A_4_5-A_8_5-A_8_8A_4_6-A_8_6-A_8_9-B_7_5+B_4_10-B_7_6+B_4_11-B_7_7+B_4_12-B_7_8+B_4_13-B_7_9+B_4_14-B_8_5+B_5_10-B_8_6+B_5_11-B_8_7+B_5_12-B_8_8+B_5_13-B_8_9+B_5_14-B_9_5+B_6_10-B_9_6+B_6_11-B_9_7+B_6_12-B_9_8+B_6_13-B_9_9+B_6_14C_5_1+C_10_1+C_5_5C_5_2+C_10_2+C_5_6C_5_3+C_10_3+C_5_7C_5_4+C_10_4+C_5_8C_6_1+C_11_1+C_6_5C_6_2+C_11_2+C_6_6C_6_3+C_11_3+C_6_7C_6_4+C_11_4+C_6_8C_7_1+C_12_1+C_7_5C_7_2+C_12_2+C_7_6C_7_3+C_12_3+C_7_7C_7_4+C_12_4+C_7_8C_8_1+C_13_1+C_8_5C_8_2+C_13_2+C_8_6C_8_3+C_13_3+C_8_7C_8_4+C_13_4+C_8_8C_9_1+C_14_1+C_9_5C_9_2+C_14_2+C_9_6C_9_3+C_14_3+C_9_7C_9_4+C_14_4+C_9_8+TraceMulA_1_4-A_5_4+A_1_7-A_5_7A_1_5-A_5_5+A_1_8-A_5_8A_1_6-A_5_6+A_1_9-A_5_9A_2_4-A_6_4+A_2_7-A_6_7A_2_5-A_6_5+A_2_8-A_6_8A_2_6-A_6_6+A_2_9-A_6_9A_3_4-A_7_4+A_3_7-A_7_7A_3_5-A_7_5+A_3_8-A_7_8A_3_6-A_7_6+A_3_9-A_7_9A_4_4-A_8_4+A_4_7-A_8_7A_4_5-A_8_5+A_4_8-A_8_8A_4_6-A_8_6+A_4_9-A_8_9B_7_5B_7_6B_7_7B_7_8B_7_9B_8_5B_8_6B_8_7B_8_8B_8_9B_9_5B_9_6B_9_7B_9_8B_9_9C_5_1+C_10_1C_5_2+C_10_2C_5_3+C_10_3C_5_4+C_10_4C_6_1+C_11_1C_6_2+C_11_2C_6_3+C_11_3C_6_4+C_11_4C_7_1+C_12_1C_7_2+C_12_2C_7_3+C_12_3C_7_4+C_12_4C_8_1+C_13_1C_8_2+C_13_2C_8_3+C_13_3C_8_4+C_13_4C_9_1+C_14_1C_9_2+C_14_2C_9_3+C_14_3C_9_4+C_14_4+TraceMul-A_1_1+A_5_1-A_1_7+A_5_7-A_1_2+A_5_2-A_1_8+A_5_8-A_1_3+A_5_3-A_1_9+A_5_9-A_2_1+A_6_1-A_2_7+A_6_7-A_2_2+A_6_2-A_2_8+A_6_8-A_2_3+A_6_3-A_2_9+A_6_9-A_3_1+A_7_1-A_3_7+A_7_7-A_3_2+A_7_2-A_3_8+A_7_8-A_3_3+A_7_3-A_3_9+A_7_9-A_4_1+A_8_1-A_4_7+A_8_7-A_4_2+A_8_2-A_4_8+A_8_8-A_4_3+A_8_3-A_4_9+A_8_9B_7_1B_7_2B_7_3B_7_4B_8_1B_8_2B_8_3B_8_4B_9_1B_9_2B_9_3B_9_4C_1_5+C_11_5C_1_6+C_11_6C_1_7+C_11_7C_1_8+C_11_8C_2_5+C_12_5C_2_6+C_12_6C_2_7+C_12_7C_2_8+C_12_8C_3_5+C_13_5C_3_6+C_13_6C_3_7+C_13_7C_3_8+C_13_8C_4_5+C_14_5C_4_6+C_14_6C_4_7+C_14_7C_4_8+C_14_8TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_1_8A_1_9A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_2_8A_2_9A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_3_8A_3_9A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_4_8A_4_9A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7A_5_8A_5_9A_6_1A_6_2A_6_3A_6_4A_6_5A_6_6A_6_7A_6_8A_6_9A_7_1A_7_2A_7_3A_7_4A_7_5A_7_6A_7_7A_7_8A_7_9A_8_1A_8_2A_8_3A_8_4A_8_5A_8_6A_8_7A_8_8A_8_9B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_1_12B_1_13B_1_14B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_2_12B_2_13B_2_14B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_3_12B_3_13B_3_14B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_4_12B_4_13B_4_14B_5_1B_5_2B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_5_12B_5_13B_5_14B_6_1B_6_2B_6_3B_6_4B_6_5B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11B_6_12B_6_13B_6_14B_7_1B_7_2B_7_3B_7_4B_7_5B_7_6B_7_7B_7_8B_7_9B_7_10B_7_11B_7_12B_7_13B_7_14B_8_1B_8_2B_8_3B_8_4B_8_5B_8_6B_8_7B_8_8B_8_9B_8_10B_8_11B_8_12B_8_13B_8_14B_9_1B_9_2B_9_3B_9_4B_9_5B_9_6B_9_7B_9_8B_9_9B_9_10B_9_11B_9_12B_9_13B_9_14C_1_1C_1_2C_1_3C_1_4C_1_5C_1_6C_1_7C_1_8C_2_1C_2_2C_2_3C_2_4C_2_5C_2_6C_2_7C_2_8C_3_1C_3_2C_3_3C_3_4C_3_5C_3_6C_3_7C_3_8C_4_1C_4_2C_4_3C_4_4C_4_5C_4_6C_4_7C_4_8C_5_1C_5_2C_5_3C_5_4C_5_5C_5_6C_5_7C_5_8C_6_1C_6_2C_6_3C_6_4C_6_5C_6_6C_6_7C_6_8C_7_1C_7_2C_7_3C_7_4C_7_5C_7_6C_7_7C_7_8C_8_1C_8_2C_8_3C_8_4C_8_5C_8_6C_8_7C_8_8C_9_1C_9_2C_9_3C_9_4C_9_5C_9_6C_9_7C_9_8C_10_1C_10_2C_10_3C_10_4C_10_5C_10_6C_10_7C_10_8C_11_1C_11_2C_11_3C_11_4C_11_5C_11_6C_11_7C_11_8C_12_1C_12_2C_12_3C_12_4C_12_5C_12_6C_12_7C_12_8C_13_1C_13_2C_13_3C_13_4C_13_5C_13_6C_13_7C_13_8C_14_1C_14_2C_14_3C_14_4C_14_5C_14_6C_14_7C_14_8TraceMulA_5_1A_5_2A_5_3A_6_1A_6_2A_6_3A_7_1A_7_2A_7_3A_8_1A_8_2A_8_3B_1_1B_4_1B_1_11B_1_2B_4_2B_1_12B_1_3B_4_3B_1_13B_1_4B_4_4B_1_14B_2_1B_5_1B_2_11B_2_2B_5_2B_2_12B_2_3B_5_3B_2_13B_2_4B_5_4B_2_14B_6_1B_3_1B_3_11B_3_2B_6_2B_3_12B_3_3B_6_3B_3_13B_3_4B_6_4B_3_14C_1_1C_1_5C_1_2C_1_6C_1_3C_1_7C_1_4C_1_8C_2_1C_2_5C_2_2C_2_6C_2_3C_2_7C_2_4C_2_8C_3_1C_3_5C_3_2C_3_6C_3_3C_3_7C_3_4C_3_8C_4_1C_4_5C_4_2C_4_6C_4_3C_4_7C_4_4C_4_8TraceMulA_1_4A_1_5A_1_6A_2_4A_2_5A_2_6A_3_4A_3_5A_3_6A_4_4A_4_5A_4_6B_1_5B_4_5B_4_10B_1_6B_4_6B_4_11B_1_7B_4_7B_4_12B_1_8B_4_8B_4_13B_1_9B_4_9B_4_14B_2_5B_5_5B_5_10B_2_6B_5_6B_5_11B_2_7B_5_7B_5_12B_2_8B_5_8B_5_13B_2_9B_5_9B_5_14B_3_5B_6_5B_6_10B_3_6B_6_6B_6_11B_3_7B_6_7B_6_12B_3_8B_6_8B_6_13B_3_9B_6_9B_6_14C_5_1C_5_5C_5_2C_5_6C_5_3C_5_7C_5_4C_5_8C_6_1C_6_5C_6_2C_6_6C_6_3C_6_7C_6_4C_6_8C_7_1C_7_5C_7_2C_7_6C_7_3C_7_7C_7_4C_7_8C_8_1C_8_5C_8_2C_8_6C_8_3C_8_7C_8_4C_8_8C_9_1C_9_5C_9_2C_9_6C_9_3C_9_7C_9_4C_9_8TraceMulA_1_7A_1_8A_1_9A_2_7A_2_8A_2_9A_3_7A_3_8A_3_9A_4_7A_4_8A_4_9B_7_5B_1_10B_7_10B_7_6B_1_11B_7_11B_7_7B_1_12B_7_12B_7_8B_1_13B_7_13B_7_9B_1_14B_7_14B_8_5B_2_10B_8_10B_8_6B_2_11B_8_11B_8_7B_2_12B_8_12B_8_8B_2_13B_8_13B_8_9B_2_14B_8_14B_9_5B_3_10B_9_10B_9_6B_3_11B_9_11B_9_7B_3_12B_9_12B_9_8B_3_13B_9_13B_9_9B_3_14B_9_14C_10_1C_10_2C_10_3C_10_4C_11_1C_11_2C_11_3C_11_4C_12_1C_12_2C_12_3C_12_4C_13_1C_13_2C_13_3C_13_4C_14_1C_14_2C_14_3C_14_4TraceMulA_5_7A_5_8A_5_9A_6_7A_6_8A_6_9A_7_7A_7_8A_7_9A_8_7A_8_8A_8_9B_4_10B_7_10B_7_1B_4_11B_7_11B_7_2B_4_12B_7_12B_7_3B_4_13B_7_13B_7_4B_4_14B_7_14B_5_10B_8_10B_8_1B_5_11B_8_11B_8_2B_5_12B_8_12B_8_3B_5_13B_8_13B_8_4B_5_14B_8_14B_6_10B_9_10B_9_1B_6_11B_9_11B_9_2B_6_12B_9_12B_9_3B_6_13B_9_13B_9_4B_6_14B_9_14C_10_5C_10_6C_10_7C_10_8C_11_5C_11_6C_11_7C_11_8C_12_5C_12_6C_12_7C_12_8C_13_5C_13_6C_13_7C_13_8C_14_5C_14_6C_14_7C_14_8TraceMulA_1_1A_1_4A_1_2A_1_5A_1_3A_1_6A_2_1A_2_4A_2_2A_2_5A_2_3A_2_6A_3_1A_3_4A_3_2A_3_5A_3_3A_3_6A_4_1A_4_4A_4_2A_4_5A_4_3A_4_6B_1_5B_1_6B_1_7B_1_8B_1_9B_2_5B_2_6B_2_7B_2_8B_2_9B_3_5B_3_6B_3_7B_3_8B_3_9C_5_1C_5_2C_5_3C_5_4C_1_1C_6_1C_1_2C_6_2C_1_3C_6_3C_1_4C_6_4C_2_1C_7_1C_2_2C_7_2C_2_3C_7_3C_2_4C_7_4C_3_1C_8_1C_3_2C_8_2C_3_3C_8_3C_3_4C_8_4C_4_1C_9_1C_4_2C_9_2C_4_3C_9_3C_4_4C_9_4TraceMulA_1_1A_1_7A_1_2A_1_8A_1_3A_1_9A_2_1A_2_7A_2_2A_2_8A_2_3A_2_9A_3_1A_3_7A_3_2A_3_8A_3_3A_3_9A_4_1A_4_7A_4_2A_4_8A_4_3A_4_9B_1_10B_1_11B_1_12B_1_13B_1_14B_2_10B_2_11B_2_12B_2_13B_2_14B_3_10B_3_11B_3_12B_3_13B_3_14C_10_1C_10_5C_10_2C_10_6C_10_3C_10_7C_10_4C_10_8C_1_1C_11_1C_1_5C_11_5C_1_2C_11_2C_1_6C_11_6C_1_3C_11_3C_1_7C_11_7C_1_4C_11_4C_1_8C_11_8C_2_1C_12_1C_2_5C_12_5C_2_2C_12_2C_2_6C_12_6C_2_3C_12_3C_2_7C_12_7C_2_4C_12_4C_2_8C_12_8C_3_1C_13_1C_3_5C_13_5C_3_2C_13_2C_3_6C_13_6C_3_3C_13_3C_3_7C_13_7C_3_4C_13_4C_3_8C_13_8C_4_1C_14_1C_4_5C_14_5C_4_2C_14_2C_4_6C_14_6C_4_3C_14_3C_4_7C_14_7C_4_4C_14_4C_4_8C_14_8TraceMulA_1_1A_5_1A_1_2A_5_2A_1_3A_5_3A_2_1A_6_1A_2_2A_6_2A_2_3A_6_3A_3_1A_7_1A_3_2A_7_2A_3_3A_7_3A_4_1A_8_1A_4_2A_8_2A_4_3A_8_3B_1_1B_7_1B_1_6B_1_2B_7_2B_1_7B_1_3B_7_3B_1_8B_1_4B_7_4B_1_9B_2_1B_8_1B_2_6B_2_2B_8_2B_2_7B_2_3B_8_3B_2_8B_2_4B_8_4B_2_9B_3_1B_9_1B_3_6B_3_2B_9_2B_3_7B_3_3B_9_3B_3_8B_3_4B_9_4B_3_9C_1_1C_1_2C_1_3C_1_4C_2_1C_2_2C_2_3C_2_4C_3_1C_3_2C_3_3C_3_4C_4_1C_4_2C_4_3C_4_4TraceMulA_5_1A_1_4A_1_5A_5_2A_5_3A_1_6A_6_1A_2_4A_2_5A_6_2A_2_6A_6_3A_7_1A_3_4A_3_5A_7_2A_3_6A_7_3A_8_1A_4_4A_4_5A_8_2A_8_3A_4_6B_1_5B_4_1B_1_6B_4_2B_1_7B_4_3B_1_8B_4_4B_1_9B_2_5B_5_1B_2_6B_5_2B_2_7B_5_3B_2_8B_5_4B_2_9B_3_5B_6_1B_3_6B_6_2B_3_7B_6_3B_3_8B_6_4B_3_9C_5_5C_5_6C_5_7C_5_8C_1_1C_6_5C_1_2C_6_6C_1_3C_6_7C_1_4C_6_8C_2_1C_7_5C_2_2C_7_6C_2_3C_7_7C_2_4C_7_8C_3_1C_8_5C_3_2C_8_6C_3_3C_8_7C_3_4C_8_8C_4_1C_9_5C_4_2C_9_6C_4_3C_9_7C_4_4C_9_8TraceMulA_5_1A_5_4A_5_2A_5_5A_5_3A_5_6A_6_1A_6_4A_6_2A_6_5A_6_3A_6_6A_7_1A_7_4A_7_2A_7_5A_7_3A_7_6A_8_1A_8_4A_8_2A_8_5A_8_3A_8_6B_4_1B_4_2B_4_3B_4_4B_5_1B_5_2B_5_3B_5_4B_6_1B_6_2B_6_3B_6_4C_1_5C_6_5C_1_6C_6_6C_1_7C_6_7C_1_8C_6_8C_2_5C_7_5C_2_6C_7_6C_2_7C_7_7C_2_8C_7_8C_3_5C_8_5C_3_6C_8_6C_3_7C_8_7C_3_8C_8_8C_4_5C_9_5C_4_6C_9_6C_4_7C_9_7C_4_8C_9_8TraceMulA_1_4A_5_4A_1_5A_5_5A_1_6A_5_6A_2_4A_6_4A_2_5A_6_5A_2_6A_6_6A_3_4A_7_4A_3_5A_7_5A_3_6A_7_6A_4_4A_8_4A_4_5A_8_5A_4_6A_8_6B_4_5B_7_5B_4_1B_4_6B_7_6B_4_2B_4_7B_7_7B_4_3B_4_8B_7_8B_4_4B_4_9B_7_9B_5_5B_8_5B_5_1B_5_6B_8_6B_5_2B_5_7B_8_7B_5_3B_5_8B_8_8B_5_4B_5_9B_8_9B_6_5B_9_5B_6_1B_6_6B_9_6B_6_2B_6_7B_9_7B_6_3B_6_8B_9_8B_6_4B_6_9B_9_9C_5_5C_5_6C_5_7C_5_8C_6_5C_6_6C_6_7C_6_8C_7_5C_7_6C_7_7C_7_8C_8_5C_8_6C_8_7C_8_8C_9_5C_9_6C_9_7C_9_8TraceMulA_5_4A_5_7A_5_5A_5_8A_5_6A_5_9A_6_4A_6_7A_6_5A_6_8A_6_6A_6_9A_7_4A_7_7A_7_5A_7_8A_7_6A_7_9A_8_4A_8_7A_8_5A_8_8A_8_6A_8_9B_4_10B_4_11B_4_12B_4_13B_4_14B_5_10B_5_11B_5_12B_5_13B_5_14B_6_10B_6_11B_6_12B_6_13B_6_14C_5_1C_10_1C_5_5C_10_5C_5_2C_10_2C_5_6C_10_6C_5_3C_10_3C_5_7C_10_7C_5_4C_10_4C_5_8C_10_8C_6_1C_11_1C_6_5C_11_5C_6_2C_11_2C_6_6C_11_6C_6_3C_11_3C_6_7C_11_7C_6_4C_11_4C_6_8C_11_8C_7_1C_12_1C_7_5C_12_5C_7_2C_12_2C_7_6C_12_6C_7_3C_12_3C_7_7C_12_7C_7_4C_12_4C_7_8C_12_8C_8_1C_13_1C_8_5C_13_5C_8_2C_13_2C_8_6C_13_6C_8_3C_13_3C_8_7C_13_7C_8_4C_13_4C_8_8C_13_8C_9_1C_14_1C_9_5C_14_5C_9_2C_14_2C_9_6C_14_6C_9_3C_14_3C_9_7C_14_7C_9_4C_14_4C_9_8C_14_8TraceMulA_1_1A_5_1A_1_7A_1_2A_5_2A_1_8A_1_3A_5_3A_1_9A_2_1A_6_1A_2_7A_2_2A_6_2A_2_8A_2_3A_6_3A_2_9A_3_1A_7_1A_3_7A_3_2A_7_2A_3_8A_3_3A_7_3A_3_9A_4_1A_8_1A_4_7A_4_2A_8_2A_4_8A_4_3A_8_3A_4_9B_1_10B_7_1B_1_11B_7_2B_1_12B_7_3B_1_13B_7_4B_1_14B_2_10B_8_1B_2_11B_8_2B_2_12B_8_3B_2_13B_8_4B_2_14B_3_10B_9_1B_3_11B_9_2B_3_12B_9_3B_3_13B_9_4B_3_14C_10_5C_10_6C_10_7C_10_8C_1_1C_1_5C_11_5C_1_2C_1_6C_11_6C_1_3C_1_7C_11_7C_1_4C_1_8C_11_8C_2_1C_2_5C_12_5C_2_2C_2_6C_12_6C_2_3C_2_7C_12_7C_2_4C_2_8C_12_8C_3_1C_3_5C_13_5C_3_2C_3_6C_13_6C_3_3C_3_7C_13_7C_3_4C_3_8C_13_8C_4_1C_4_5C_14_5C_4_2C_4_6C_14_6C_4_3C_4_7C_14_7C_4_4C_4_8C_14_8TraceMulA_1_4A_5_4A_5_7A_1_5A_5_5A_5_8A_1_6A_5_6A_5_9A_2_4A_6_4A_6_7A_2_5A_6_5A_6_8A_2_6A_6_6A_6_9A_3_4A_7_4A_7_7A_3_5A_7_5A_7_8A_3_6A_7_6A_7_9A_4_4A_8_4A_8_7A_4_5A_8_5A_8_8A_4_6A_8_6A_8_9B_7_5B_4_10B_7_6B_4_11B_7_7B_4_12B_7_8B_4_13B_7_9B_4_14B_8_5B_5_10B_8_6B_5_11B_8_7B_5_12B_8_8B_5_13B_8_9B_5_14B_9_5B_6_10B_9_6B_6_11B_9_7B_6_12B_9_8B_6_13B_9_9B_6_14C_5_1C_10_1C_5_5C_5_2C_10_2C_5_6C_5_3C_10_3C_5_7C_5_4C_10_4C_5_8C_6_1C_11_1C_6_5C_6_2C_11_2C_6_6C_6_3C_11_3C_6_7C_6_4C_11_4C_6_8C_7_1C_12_1C_7_5C_7_2C_12_2C_7_6C_7_3C_12_3C_7_7C_7_4C_12_4C_7_8C_8_1C_13_1C_8_5C_8_2C_13_2C_8_6C_8_3C_13_3C_8_7C_8_4C_13_4C_8_8C_9_1C_14_1C_9_5C_9_2C_14_2C_9_6C_9_3C_14_3C_9_7C_9_4C_14_4C_9_8TraceMulA_1_4A_5_4A_1_7A_5_7A_1_5A_5_5A_1_8A_5_8A_1_6A_5_6A_1_9A_5_9A_2_4A_6_4A_2_7A_6_7A_2_5A_6_5A_2_8A_6_8A_2_6A_6_6A_2_9A_6_9A_3_4A_7_4A_3_7A_7_7A_3_5A_7_5A_3_8A_7_8A_3_6A_7_6A_3_9A_7_9A_4_4A_8_4A_4_7A_8_7A_4_5A_8_5A_4_8A_8_8A_4_6A_8_6A_4_9A_8_9B_7_5B_7_6B_7_7B_7_8B_7_9B_8_5B_8_6B_8_7B_8_8B_8_9B_9_5B_9_6B_9_7B_9_8B_9_9C_5_1C_10_1C_5_2C_10_2C_5_3C_10_3C_5_4C_10_4C_6_1C_11_1C_6_2C_11_2C_6_3C_11_3C_6_4C_11_4C_7_1C_12_1C_7_2C_12_2C_7_3C_12_3C_7_4C_12_4C_8_1C_13_1C_8_2C_13_2C_8_3C_13_3C_8_4C_13_4C_9_1C_14_1C_9_2C_14_2C_9_3C_14_3C_9_4C_14_4TraceMulA_1_1A_5_1A_1_7A_5_7A_1_2A_5_2A_1_8A_5_8A_1_3A_5_3A_1_9A_5_9A_2_1A_6_1A_2_7A_6_7A_2_2A_6_2A_2_8A_6_8A_2_3A_6_3A_2_9A_6_9A_3_1A_7_1A_3_7A_7_7A_3_2A_7_2A_3_8A_7_8A_3_3A_7_3A_3_9A_7_9A_4_1A_8_1A_4_7A_8_7A_4_2A_8_2A_4_8A_8_8A_4_3A_8_3A_4_9A_8_9B_7_1B_7_2B_7_3B_7_4B_8_1B_8_2B_8_3B_8_4B_9_1B_9_2B_9_3B_9_4C_1_5C_11_5C_1_6C_11_6C_1_7C_11_7C_1_8C_11_8C_2_5C_12_5C_2_6C_12_6C_2_7C_12_7C_2_8C_12_8C_3_5C_13_5C_3_6C_13_6C_3_7C_13_7C_3_8C_13_8C_4_5C_14_5C_4_6C_14_6C_4_7C_14_7C_4_8C_14_8Trace(Mul(Matrix(8, 9, [[A_1_1,A_1_2,A_1_3,A_1_4,A_1_5,A_1_6,A_1_7,A_1_8,A_1_9],[A_2_1,A_2_2,A_2_3,A_2_4,A_2_5,A_2_6,A_2_7,A_2_8,A_2_9],[A_3_1,A_3_2,A_3_3,A_3_4,A_3_5,A_3_6,A_3_7,A_3_8,A_3_9],[A_4_1,A_4_2,A_4_3,A_4_4,A_4_5,A_4_6,A_4_7,A_4_8,A_4_9],[A_5_1,A_5_2,A_5_3,A_5_4,A_5_5,A_5_6,A_5_7,A_5_8,A_5_9],[A_6_1,A_6_2,A_6_3,A_6_4,A_6_5,A_6_6,A_6_7,A_6_8,A_6_9],[A_7_1,A_7_2,A_7_3,A_7_4,A_7_5,A_7_6,A_7_7,A_7_8,A_7_9],[A_8_1,A_8_2,A_8_3,A_8_4,A_8_5,A_8_6,A_8_7,A_8_8,A_8_9]]),Matrix(9, 14, [[B_1_1,B_1_2,B_1_3,B_1_4,B_1_5,B_1_6,B_1_7,B_1_8,B_1_9,B_1_10,B_1_11,B_1_12,B_1_13,B_1_14],[B_2_1,B_2_2,B_2_3,B_2_4,B_2_5,B_2_6,B_2_7,B_2_8,B_2_9,B_2_10,B_2_11,B_2_12,B_2_13,B_2_14],[B_3_1,B_3_2,B_3_3,B_3_4,B_3_5,B_3_6,B_3_7,B_3_8,B_3_9,B_3_10,B_3_11,B_3_12,B_3_13,B_3_14],[B_4_1,B_4_2,B_4_3,B_4_4,B_4_5,B_4_6,B_4_7,B_4_8,B_4_9,B_4_10,B_4_11,B_4_12,B_4_13,B_4_14],[B_5_1,B_5_2,B_5_3,B_5_4,B_5_5,B_5_6,B_5_7,B_5_8,B_5_9,B_5_10,B_5_11,B_5_12,B_5_13,B_5_14],[B_6_1,B_6_2,B_6_3,B_6_4,B_6_5,B_6_6,B_6_7,B_6_8,B_6_9,B_6_10,B_6_11,B_6_12,B_6_13,B_6_14],[B_7_1,B_7_2,B_7_3,B_7_4,B_7_5,B_7_6,B_7_7,B_7_8,B_7_9,B_7_10,B_7_11,B_7_12,B_7_13,B_7_14],[B_8_1,B_8_2,B_8_3,B_8_4,B_8_5,B_8_6,B_8_7,B_8_8,B_8_9,B_8_10,B_8_11,B_8_12,B_8_13,B_8_14],[B_9_1,B_9_2,B_9_3,B_9_4,B_9_5,B_9_6,B_9_7,B_9_8,B_9_9,B_9_10,B_9_11,B_9_12,B_9_13,B_9_14]]),Matrix(14, 8, [[C_1_1,C_1_2,C_1_3,C_1_4,C_1_5,C_1_6,C_1_7,C_1_8],[C_2_1,C_2_2,C_2_3,C_2_4,C_2_5,C_2_6,C_2_7,C_2_8],[C_3_1,C_3_2,C_3_3,C_3_4,C_3_5,C_3_6,C_3_7,C_3_8],[C_4_1,C_4_2,C_4_3,C_4_4,C_4_5,C_4_6,C_4_7,C_4_8],[C_5_1,C_5_2,C_5_3,C_5_4,C_5_5,C_5_6,C_5_7,C_5_8],[C_6_1,C_6_2,C_6_3,C_6_4,C_6_5,C_6_6,C_6_7,C_6_8],[C_7_1,C_7_2,C_7_3,C_7_4,C_7_5,C_7_6,C_7_7,C_7_8],[C_8_1,C_8_2,C_8_3,C_8_4,C_8_5,C_8_6,C_8_7,C_8_8],[C_9_1,C_9_2,C_9_3,C_9_4,C_9_5,C_9_6,C_9_7,C_9_8],[C_10_1,C_10_2,C_10_3,C_10_4,C_10_5,C_10_6,C_10_7,C_10_8],[C_11_1,C_11_2,C_11_3,C_11_4,C_11_5,C_11_6,C_11_7,C_11_8],[C_12_1,C_12_2,C_12_3,C_12_4,C_12_5,C_12_6,C_12_7,C_12_8],[C_13_1,C_13_2,C_13_3,C_13_4,C_13_5,C_13_6,C_13_7,C_13_8],[C_14_1,C_14_2,C_14_3,C_14_4,C_14_5,C_14_6,C_14_7,C_14_8]]))) = Trace(Mul(Matrix(4, 3, [[A_5_1,A_5_2,A_5_3],[A_6_1,A_6_2,A_6_3],[A_7_1,A_7_2,A_7_3],[A_8_1,A_8_2,A_8_3]]),Matrix(3, 4, [[B_1_1-B_4_1-B_1_11,B_1_2-B_4_2-B_1_12,B_1_3-B_4_3-B_1_13,B_1_4-B_4_4-B_1_14],[B_2_1-B_5_1-B_2_11,B_2_2-B_5_2-B_2_12,B_2_3-B_5_3-B_2_13,B_2_4-B_5_4-B_2_14],[-B_6_1+B_3_1-B_3_11,B_3_2-B_6_2-B_3_12,B_3_3-B_6_3-B_3_13,B_3_4-B_6_4-B_3_14]]),Matrix(4, 4, [[C_1_1+C_1_5,C_1_2+C_1_6,C_1_3+C_1_7,C_1_4+C_1_8],[C_2_1+C_2_5,C_2_2+C_2_6,C_2_3+C_2_7,C_2_4+C_2_8],[C_3_1+C_3_5,C_3_2+C_3_6,C_3_3+C_3_7,C_3_4+C_3_8],[C_4_1+C_4_5,C_4_2+C_4_6,C_4_3+C_4_7,C_4_4+C_4_8]])))+Trace(Mul(Matrix(4, 3, [[A_1_4,A_1_5,A_1_6],[A_2_4,A_2_5,A_2_6],[A_3_4,A_3_5,A_3_6],[A_4_4,A_4_5,A_4_6]]),Matrix(3, 5, [[-B_1_5+B_4_5-B_4_10,-B_1_6+B_4_6-B_4_11,-B_1_7+B_4_7-B_4_12,-B_1_8+B_4_8-B_4_13,-B_1_9+B_4_9-B_4_14],[-B_2_5+B_5_5-B_5_10,-B_2_6+B_5_6-B_5_11,-B_2_7+B_5_7-B_5_12,-B_2_8+B_5_8-B_5_13,-B_2_9+B_5_9-B_5_14],[-B_3_5+B_6_5-B_6_10,-B_3_6+B_6_6-B_6_11,-B_3_7+B_6_7-B_6_12,-B_3_8+B_6_8-B_6_13,-B_3_9+B_6_9-B_6_14]]),Matrix(5, 4, [[C_5_1+C_5_5,C_5_2+C_5_6,C_5_3+C_5_7,C_5_4+C_5_8],[C_6_1+C_6_5,C_6_2+C_6_6,C_6_3+C_6_7,C_6_4+C_6_8],[C_7_1+C_7_5,C_7_2+C_7_6,C_7_3+C_7_7,C_7_4+C_7_8],[C_8_1+C_8_5,C_8_2+C_8_6,C_8_3+C_8_7,C_8_4+C_8_8],[C_9_1+C_9_5,C_9_2+C_9_6,C_9_3+C_9_7,C_9_4+C_9_8]])))+Trace(Mul(Matrix(4, 3, [[A_1_7,A_1_8,A_1_9],[A_2_7,A_2_8,A_2_9],[A_3_7,A_3_8,A_3_9],[A_4_7,A_4_8,A_4_9]]),Matrix(3, 5, [[-B_7_5-B_1_10+B_7_10,-B_7_6-B_1_11+B_7_11,-B_7_7-B_1_12+B_7_12,-B_7_8-B_1_13+B_7_13,-B_7_9-B_1_14+B_7_14],[-B_8_5-B_2_10+B_8_10,-B_8_6-B_2_11+B_8_11,-B_8_7-B_2_12+B_8_12,-B_8_8-B_2_13+B_8_13,-B_8_9-B_2_14+B_8_14],[-B_9_5-B_3_10+B_9_10,-B_9_6-B_3_11+B_9_11,-B_9_7-B_3_12+B_9_12,-B_9_8-B_3_13+B_9_13,-B_9_9-B_3_14+B_9_14]]),Matrix(5, 4, [[C_10_1,C_10_2,C_10_3,C_10_4],[C_11_1,C_11_2,C_11_3,C_11_4],[C_12_1,C_12_2,C_12_3,C_12_4],[C_13_1,C_13_2,C_13_3,C_13_4],[C_14_1,C_14_2,C_14_3,C_14_4]])))+Trace(Mul(Matrix(4, 3, [[A_5_7,A_5_8,A_5_9],[A_6_7,A_6_8,A_6_9],[A_7_7,A_7_8,A_7_9],[A_8_7,A_8_8,A_8_9]]),Matrix(3, 5, [[-B_4_10+B_7_10,-B_7_1-B_4_11+B_7_11,-B_7_2-B_4_12+B_7_12,-B_7_3-B_4_13+B_7_13,-B_7_4-B_4_14+B_7_14],[-B_5_10+B_8_10,-B_8_1-B_5_11+B_8_11,-B_8_2-B_5_12+B_8_12,-B_8_3-B_5_13+B_8_13,-B_8_4-B_5_14+B_8_14],[-B_6_10+B_9_10,-B_9_1-B_6_11+B_9_11,-B_9_2-B_6_12+B_9_12,-B_9_3-B_6_13+B_9_13,-B_9_4-B_6_14+B_9_14]]),Matrix(5, 4, [[C_10_5,C_10_6,C_10_7,C_10_8],[C_11_5,C_11_6,C_11_7,C_11_8],[C_12_5,C_12_6,C_12_7,C_12_8],[C_13_5,C_13_6,C_13_7,C_13_8],[C_14_5,C_14_6,C_14_7,C_14_8]])))+Trace(Mul(Matrix(4, 3, [[A_1_1+A_1_4,A_1_2+A_1_5,A_1_3+A_1_6],[A_2_1+A_2_4,A_2_2+A_2_5,A_2_3+A_2_6],[A_3_1+A_3_4,A_3_2+A_3_5,A_3_3+A_3_6],[A_4_1+A_4_4,A_4_2+A_4_5,A_4_3+A_4_6]]),Matrix(3, 5, [[B_1_5,B_1_6,B_1_7,B_1_8,B_1_9],[B_2_5,B_2_6,B_2_7,B_2_8,B_2_9],[B_3_5,B_3_6,B_3_7,B_3_8,B_3_9]]),Matrix(5, 4, [[C_5_1,C_5_2,C_5_3,C_5_4],[C_1_1+C_6_1,C_1_2+C_6_2,C_1_3+C_6_3,C_1_4+C_6_4],[C_2_1+C_7_1,C_2_2+C_7_2,C_2_3+C_7_3,C_2_4+C_7_4],[C_3_1+C_8_1,C_3_2+C_8_2,C_3_3+C_8_3,C_3_4+C_8_4],[C_4_1+C_9_1,C_4_2+C_9_2,C_4_3+C_9_3,C_4_4+C_9_4]])))+Trace(Mul(Matrix(4, 3, [[A_1_1+A_1_7,A_1_2+A_1_8,A_1_3+A_1_9],[A_2_1+A_2_7,A_2_2+A_2_8,A_2_3+A_2_9],[A_3_1+A_3_7,A_3_2+A_3_8,A_3_3+A_3_9],[A_4_1+A_4_7,A_4_2+A_4_8,A_4_3+A_4_9]]),Matrix(3, 5, [[B_1_10,B_1_11,B_1_12,B_1_13,B_1_14],[B_2_10,B_2_11,B_2_12,B_2_13,B_2_14],[B_3_10,B_3_11,B_3_12,B_3_13,B_3_14]]),Matrix(5, 4, [[C_10_1+C_10_5,C_10_2+C_10_6,C_10_3+C_10_7,C_10_4+C_10_8],[C_1_1+C_11_1+C_1_5+C_11_5,C_1_2+C_11_2+C_1_6+C_11_6,C_1_3+C_11_3+C_1_7+C_11_7,C_1_4+C_11_4+C_1_8+C_11_8],[C_2_1+C_12_1+C_2_5+C_12_5,C_2_2+C_12_2+C_2_6+C_12_6,C_2_3+C_12_3+C_2_7+C_12_7,C_2_4+C_12_4+C_2_8+C_12_8],[C_3_1+C_13_1+C_3_5+C_13_5,C_3_2+C_13_2+C_3_6+C_13_6,C_3_3+C_13_3+C_3_7+C_13_7,C_3_4+C_13_4+C_3_8+C_13_8],[C_4_1+C_14_1+C_4_5+C_14_5,C_4_2+C_14_2+C_4_6+C_14_6,C_4_3+C_14_3+C_4_7+C_14_7,C_4_4+C_14_4+C_4_8+C_14_8]])))+Trace(Mul(Matrix(4, 3, [[A_1_1-A_5_1,A_1_2-A_5_2,A_1_3-A_5_3],[A_2_1-A_6_1,A_2_2-A_6_2,A_2_3-A_6_3],[A_3_1-A_7_1,A_3_2-A_7_2,A_3_3-A_7_3],[A_4_1-A_8_1,A_4_2-A_8_2,A_4_3-A_8_3]]),Matrix(3, 4, [[B_1_1-B_7_1-B_1_6,B_1_2-B_7_2-B_1_7,B_1_3-B_7_3-B_1_8,B_1_4-B_7_4-B_1_9],[B_2_1-B_8_1-B_2_6,B_2_2-B_8_2-B_2_7,B_2_3-B_8_3-B_2_8,B_2_4-B_8_4-B_2_9],[B_3_1-B_9_1-B_3_6,B_3_2-B_9_2-B_3_7,B_3_3-B_9_3-B_3_8,B_3_4-B_9_4-B_3_9]]),Matrix(4, 4, [[C_1_1,C_1_2,C_1_3,C_1_4],[C_2_1,C_2_2,C_2_3,C_2_4],[C_3_1,C_3_2,C_3_3,C_3_4],[C_4_1,C_4_2,C_4_3,C_4_4]])))+Trace(Mul(Matrix(4, 3, [[A_5_1+A_1_4,A_1_5+A_5_2,A_5_3+A_1_6],[A_6_1+A_2_4,A_2_5+A_6_2,A_2_6+A_6_3],[A_7_1+A_3_4,A_3_5+A_7_2,A_3_6+A_7_3],[A_8_1+A_4_4,A_4_5+A_8_2,A_8_3+A_4_6]]),Matrix(3, 5, [[-B_1_5,B_4_1-B_1_6,B_4_2-B_1_7,B_4_3-B_1_8,B_4_4-B_1_9],[-B_2_5,B_5_1-B_2_6,B_5_2-B_2_7,B_5_3-B_2_8,B_5_4-B_2_9],[-B_3_5,B_6_1-B_3_6,B_6_2-B_3_7,B_6_3-B_3_8,B_6_4-B_3_9]]),Matrix(5, 4, [[-C_5_5,-C_5_6,-C_5_7,-C_5_8],[C_1_1-C_6_5,C_1_2-C_6_6,C_1_3-C_6_7,C_1_4-C_6_8],[C_2_1-C_7_5,C_2_2-C_7_6,C_2_3-C_7_7,C_2_4-C_7_8],[C_3_1-C_8_5,C_3_2-C_8_6,C_3_3-C_8_7,C_3_4-C_8_8],[C_4_1-C_9_5,C_4_2-C_9_6,C_4_3-C_9_7,C_4_4-C_9_8]])))+Trace(Mul(Matrix(4, 3, [[A_5_1+A_5_4,A_5_2+A_5_5,A_5_3+A_5_6],[A_6_1+A_6_4,A_6_2+A_6_5,A_6_3+A_6_6],[A_7_1+A_7_4,A_7_2+A_7_5,A_7_3+A_7_6],[A_8_1+A_8_4,A_8_2+A_8_5,A_8_3+A_8_6]]),Matrix(3, 4, [[B_4_1,B_4_2,B_4_3,B_4_4],[B_5_1,B_5_2,B_5_3,B_5_4],[B_6_1,B_6_2,B_6_3,B_6_4]]),Matrix(4, 4, [[C_1_5+C_6_5,C_1_6+C_6_6,C_1_7+C_6_7,C_1_8+C_6_8],[C_2_5+C_7_5,C_2_6+C_7_6,C_2_7+C_7_7,C_2_8+C_7_8],[C_3_5+C_8_5,C_3_6+C_8_6,C_3_7+C_8_7,C_3_8+C_8_8],[C_4_5+C_9_5,C_4_6+C_9_6,C_4_7+C_9_7,C_4_8+C_9_8]])))+Trace(Mul(Matrix(4, 3, [[A_1_4-A_5_4,A_1_5-A_5_5,A_1_6-A_5_6],[A_2_4-A_6_4,A_2_5-A_6_5,A_2_6-A_6_6],[A_3_4-A_7_4,A_3_5-A_7_5,A_3_6-A_7_6],[A_4_4-A_8_4,A_4_5-A_8_5,A_4_6-A_8_6]]),Matrix(3, 5, [[-B_4_5+B_7_5,B_4_1-B_4_6+B_7_6,B_4_2-B_4_7+B_7_7,B_4_3-B_4_8+B_7_8,B_4_4-B_4_9+B_7_9],[-B_5_5+B_8_5,B_5_1-B_5_6+B_8_6,B_5_2-B_5_7+B_8_7,B_5_3-B_5_8+B_8_8,B_5_4-B_5_9+B_8_9],[-B_6_5+B_9_5,B_6_1-B_6_6+B_9_6,B_6_2-B_6_7+B_9_7,B_6_3-B_6_8+B_9_8,B_6_4-B_6_9+B_9_9]]),Matrix(5, 4, [[C_5_5,C_5_6,C_5_7,C_5_8],[C_6_5,C_6_6,C_6_7,C_6_8],[C_7_5,C_7_6,C_7_7,C_7_8],[C_8_5,C_8_6,C_8_7,C_8_8],[C_9_5,C_9_6,C_9_7,C_9_8]])))+Trace(Mul(Matrix(4, 3, [[A_5_4+A_5_7,A_5_5+A_5_8,A_5_6+A_5_9],[A_6_4+A_6_7,A_6_5+A_6_8,A_6_6+A_6_9],[A_7_4+A_7_7,A_7_5+A_7_8,A_7_6+A_7_9],[A_8_4+A_8_7,A_8_5+A_8_8,A_8_6+A_8_9]]),Matrix(3, 5, [[B_4_10,B_4_11,B_4_12,B_4_13,B_4_14],[B_5_10,B_5_11,B_5_12,B_5_13,B_5_14],[B_6_10,B_6_11,B_6_12,B_6_13,B_6_14]]),Matrix(5, 4, [[C_5_1+C_10_1+C_5_5+C_10_5,C_5_2+C_10_2+C_5_6+C_10_6,C_5_3+C_10_3+C_5_7+C_10_7,C_5_4+C_10_4+C_5_8+C_10_8],[C_6_1+C_11_1+C_6_5+C_11_5,C_6_2+C_11_2+C_6_6+C_11_6,C_6_3+C_11_3+C_6_7+C_11_7,C_6_4+C_11_4+C_6_8+C_11_8],[C_7_1+C_12_1+C_7_5+C_12_5,C_7_2+C_12_2+C_7_6+C_12_6,C_7_3+C_12_3+C_7_7+C_12_7,C_7_4+C_12_4+C_7_8+C_12_8],[C_8_1+C_13_1+C_8_5+C_13_5,C_8_2+C_13_2+C_8_6+C_13_6,C_8_3+C_13_3+C_8_7+C_13_7,C_8_4+C_13_4+C_8_8+C_13_8],[C_9_1+C_14_1+C_9_5+C_14_5,C_9_2+C_14_2+C_9_6+C_14_6,C_9_3+C_14_3+C_9_7+C_14_7,C_9_4+C_14_4+C_9_8+C_14_8]])))+Trace(Mul(Matrix(4, 3, [[A_1_1-A_5_1+A_1_7,A_1_2-A_5_2+A_1_8,A_1_3-A_5_3+A_1_9],[A_2_1-A_6_1+A_2_7,A_2_2-A_6_2+A_2_8,A_2_3-A_6_3+A_2_9],[A_3_1-A_7_1+A_3_7,A_3_2-A_7_2+A_3_8,A_3_3-A_7_3+A_3_9],[A_4_1-A_8_1+A_4_7,A_4_2-A_8_2+A_4_8,A_4_3-A_8_3+A_4_9]]),Matrix(3, 5, [[-B_1_10,B_7_1-B_1_11,B_7_2-B_1_12,B_7_3-B_1_13,B_7_4-B_1_14],[-B_2_10,B_8_1-B_2_11,B_8_2-B_2_12,B_8_3-B_2_13,B_8_4-B_2_14],[-B_3_10,B_9_1-B_3_11,B_9_2-B_3_12,B_9_3-B_3_13,B_9_4-B_3_14]]),Matrix(5, 4, [[C_10_5,C_10_6,C_10_7,C_10_8],[C_1_1+C_1_5+C_11_5,C_1_2+C_1_6+C_11_6,C_1_3+C_1_7+C_11_7,C_1_4+C_1_8+C_11_8],[C_2_1+C_2_5+C_12_5,C_2_2+C_2_6+C_12_6,C_2_3+C_2_7+C_12_7,C_2_4+C_2_8+C_12_8],[C_3_1+C_3_5+C_13_5,C_3_2+C_3_6+C_13_6,C_3_3+C_3_7+C_13_7,C_3_4+C_3_8+C_13_8],[C_4_1+C_4_5+C_14_5,C_4_2+C_4_6+C_14_6,C_4_3+C_4_7+C_14_7,C_4_4+C_4_8+C_14_8]])))+Trace(Mul(Matrix(4, 3, [[A_1_4-A_5_4-A_5_7,A_1_5-A_5_5-A_5_8,A_1_6-A_5_6-A_5_9],[A_2_4-A_6_4-A_6_7,A_2_5-A_6_5-A_6_8,A_2_6-A_6_6-A_6_9],[A_3_4-A_7_4-A_7_7,A_3_5-A_7_5-A_7_8,A_3_6-A_7_6-A_7_9],[A_4_4-A_8_4-A_8_7,A_4_5-A_8_5-A_8_8,A_4_6-A_8_6-A_8_9]]),Matrix(3, 5, [[-B_7_5+B_4_10,-B_7_6+B_4_11,-B_7_7+B_4_12,-B_7_8+B_4_13,-B_7_9+B_4_14],[-B_8_5+B_5_10,-B_8_6+B_5_11,-B_8_7+B_5_12,-B_8_8+B_5_13,-B_8_9+B_5_14],[-B_9_5+B_6_10,-B_9_6+B_6_11,-B_9_7+B_6_12,-B_9_8+B_6_13,-B_9_9+B_6_14]]),Matrix(5, 4, [[C_5_1+C_10_1+C_5_5,C_5_2+C_10_2+C_5_6,C_5_3+C_10_3+C_5_7,C_5_4+C_10_4+C_5_8],[C_6_1+C_11_1+C_6_5,C_6_2+C_11_2+C_6_6,C_6_3+C_11_3+C_6_7,C_6_4+C_11_4+C_6_8],[C_7_1+C_12_1+C_7_5,C_7_2+C_12_2+C_7_6,C_7_3+C_12_3+C_7_7,C_7_4+C_12_4+C_7_8],[C_8_1+C_13_1+C_8_5,C_8_2+C_13_2+C_8_6,C_8_3+C_13_3+C_8_7,C_8_4+C_13_4+C_8_8],[C_9_1+C_14_1+C_9_5,C_9_2+C_14_2+C_9_6,C_9_3+C_14_3+C_9_7,C_9_4+C_14_4+C_9_8]])))+Trace(Mul(Matrix(4, 3, [[A_1_4-A_5_4+A_1_7-A_5_7,A_1_5-A_5_5+A_1_8-A_5_8,A_1_6-A_5_6+A_1_9-A_5_9],[A_2_4-A_6_4+A_2_7-A_6_7,A_2_5-A_6_5+A_2_8-A_6_8,A_2_6-A_6_6+A_2_9-A_6_9],[A_3_4-A_7_4+A_3_7-A_7_7,A_3_5-A_7_5+A_3_8-A_7_8,A_3_6-A_7_6+A_3_9-A_7_9],[A_4_4-A_8_4+A_4_7-A_8_7,A_4_5-A_8_5+A_4_8-A_8_8,A_4_6-A_8_6+A_4_9-A_8_9]]),Matrix(3, 5, [[B_7_5,B_7_6,B_7_7,B_7_8,B_7_9],[B_8_5,B_8_6,B_8_7,B_8_8,B_8_9],[B_9_5,B_9_6,B_9_7,B_9_8,B_9_9]]),Matrix(5, 4, [[C_5_1+C_10_1,C_5_2+C_10_2,C_5_3+C_10_3,C_5_4+C_10_4],[C_6_1+C_11_1,C_6_2+C_11_2,C_6_3+C_11_3,C_6_4+C_11_4],[C_7_1+C_12_1,C_7_2+C_12_2,C_7_3+C_12_3,C_7_4+C_12_4],[C_8_1+C_13_1,C_8_2+C_13_2,C_8_3+C_13_3,C_8_4+C_13_4],[C_9_1+C_14_1,C_9_2+C_14_2,C_9_3+C_14_3,C_9_4+C_14_4]])))+Trace(Mul(Matrix(4, 3, [[-A_1_1+A_5_1-A_1_7+A_5_7,-A_1_2+A_5_2-A_1_8+A_5_8,-A_1_3+A_5_3-A_1_9+A_5_9],[-A_2_1+A_6_1-A_2_7+A_6_7,-A_2_2+A_6_2-A_2_8+A_6_8,-A_2_3+A_6_3-A_2_9+A_6_9],[-A_3_1+A_7_1-A_3_7+A_7_7,-A_3_2+A_7_2-A_3_8+A_7_8,-A_3_3+A_7_3-A_3_9+A_7_9],[-A_4_1+A_8_1-A_4_7+A_8_7,-A_4_2+A_8_2-A_4_8+A_8_8,-A_4_3+A_8_3-A_4_9+A_8_9]]),Matrix(3, 4, [[B_7_1,B_7_2,B_7_3,B_7_4],[B_8_1,B_8_2,B_8_3,B_8_4],[B_9_1,B_9_2,B_9_3,B_9_4]]),Matrix(4, 4, [[C_1_5+C_11_5,C_1_6+C_11_6,C_1_7+C_11_7,C_1_8+C_11_8],[C_2_5+C_12_5,C_2_6+C_12_6,C_2_7+C_12_7,C_2_8+C_12_8],[C_3_5+C_13_5,C_3_6+C_13_6,C_3_7+C_13_7,C_3_8+C_13_8],[C_4_5+C_14_5,C_4_6+C_14_6,C_4_7+C_14_7,C_4_8+C_14_8]])))

N.B.: for any matrices A, B and C such that the expression Tr(Mul(A,B,C)) is defined, one can construct several trilinear homogeneous polynomials P(A,B,C) such that P(A,B,C)=Tr(Mul(A,B,C)) (P(A,B,C) variables are A,B and C's coefficients). Each trilinear P expression encodes a matrix multiplication algorithm: the coefficient in C_i_j of P(A,B,C) is the (i,j)-th entry of the matrix product Mul(A,B)=Transpose(C).

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table