Description of fast matrix multiplication algorithm: ⟨8×32×32:4732⟩

Algorithm type

36X8Y8Z8+4X2Y18Z2+24X4Y12Z4+96X4Y8Z4+32X2Y12Z2+336X4Y4Z4+64X2Y8Z2+24XY9Z+184X2Y6Z2+736X2Y4Z2+192XY6Z+820X2Y2Z2+384XY4Z+240XY3Z+960XY2Z+600XYZ36X8Y8Z84X2Y18Z224X4Y12Z496X4Y8Z432X2Y12Z2336X4Y4Z464X2Y8Z224XY9Z184X2Y6Z2736X2Y4Z2192XY6Z820X2Y2Z2384XY4Z240XY3Z960XY2Z600XYZ36*X^8*Y^8*Z^8+4*X^2*Y^18*Z^2+24*X^4*Y^12*Z^4+96*X^4*Y^8*Z^4+32*X^2*Y^12*Z^2+336*X^4*Y^4*Z^4+64*X^2*Y^8*Z^2+24*X*Y^9*Z+184*X^2*Y^6*Z^2+736*X^2*Y^4*Z^2+192*X*Y^6*Z+820*X^2*Y^2*Z^2+384*X*Y^4*Z+240*X*Y^3*Z+960*X*Y^2*Z+600*X*Y*Z

Algorithm definition

The algorithm ⟨8×32×32:4732⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨4×16×16:676⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table