Description of fast matrix multiplication algorithm: ⟨8×30×32:4522⟩

Algorithm type

27X8Y8Z8+3X8Y6Z8+2X2Y18Z2+6X6Y6Z8+15X4Y12Z4+2X2Y16Z2+9X4Y10Z4+77X4Y8Z4+30X2Y12Z2+9X4Y6Z4+6X2Y10Z2+270X4Y4Z4+44X2Y8Z2+6X2Y6Z4+18X4Y3Z4+12XY9Z+6X4Y2Z4+36X3Y3Z4+138X2Y6Z2+12XY8Z+54X2Y5Z2+602X2Y4Z2+180XY6Z+54X2Y3Z2+36XY5Z+756X2Y2Z2+264XY4Z+36XY3Z2+36X2YZ2+288XY3Z+840XY2Z+648XYZ27X8Y8Z83X8Y6Z82X2Y18Z26X6Y6Z815X4Y12Z42X2Y16Z29X4Y10Z477X4Y8Z430X2Y12Z29X4Y6Z46X2Y10Z2270X4Y4Z444X2Y8Z26X2Y6Z418X4Y3Z412XY9Z6X4Y2Z436X3Y3Z4138X2Y6Z212XY8Z54X2Y5Z2602X2Y4Z2180XY6Z54X2Y3Z236XY5Z756X2Y2Z2264XY4Z36XY3Z236X2YZ2288XY3Z840XY2Z648XYZ27*X^8*Y^8*Z^8+3*X^8*Y^6*Z^8+2*X^2*Y^18*Z^2+6*X^6*Y^6*Z^8+15*X^4*Y^12*Z^4+2*X^2*Y^16*Z^2+9*X^4*Y^10*Z^4+77*X^4*Y^8*Z^4+30*X^2*Y^12*Z^2+9*X^4*Y^6*Z^4+6*X^2*Y^10*Z^2+270*X^4*Y^4*Z^4+44*X^2*Y^8*Z^2+6*X^2*Y^6*Z^4+18*X^4*Y^3*Z^4+12*X*Y^9*Z+6*X^4*Y^2*Z^4+36*X^3*Y^3*Z^4+138*X^2*Y^6*Z^2+12*X*Y^8*Z+54*X^2*Y^5*Z^2+602*X^2*Y^4*Z^2+180*X*Y^6*Z+54*X^2*Y^3*Z^2+36*X*Y^5*Z+756*X^2*Y^2*Z^2+264*X*Y^4*Z+36*X*Y^3*Z^2+36*X^2*Y*Z^2+288*X*Y^3*Z+840*X*Y^2*Z+648*X*Y*Z

Algorithm definition

The algorithm ⟨8×30×32:4522⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨4×15×16:646⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table