Description of fast matrix multiplication algorithm: ⟨8×28×32:4264⟩

Algorithm type

18X8Y8Z8+6X8Y6Z8+12X6Y6Z8+6X4Y12Z4+4X2Y15Z2+12X4Y10Z4+2X4Y9Z4+48X4Y8Z4+4X3Y9Z4+8X2Y12Z2+20X4Y6Z4+16X2Y10Z2+16X3Y6Z4+4X2Y9Z2+258X4Y4Z4+32X2Y8Z2+12X2Y6Z4+4XY9Z2+10X4Y3Z4+36XY9Z+12X4Y2Z4+20X3Y3Z4+200X2Y6Z2+20X2Y5Z2+16XY6Z2+488X2Y4Z2+192XY6Z+24X2Y3Z2+792X2Y2Z2+192XY4Z+20XY3Z2+20X2YZ2+312XY3Z+768XY2Z+660XYZ18X8Y8Z86X8Y6Z812X6Y6Z86X4Y12Z44X2Y15Z212X4Y10Z42X4Y9Z448X4Y8Z44X3Y9Z48X2Y12Z220X4Y6Z416X2Y10Z216X3Y6Z44X2Y9Z2258X4Y4Z432X2Y8Z212X2Y6Z44XY9Z210X4Y3Z436XY9Z12X4Y2Z420X3Y3Z4200X2Y6Z220X2Y5Z216XY6Z2488X2Y4Z2192XY6Z24X2Y3Z2792X2Y2Z2192XY4Z20XY3Z220X2YZ2312XY3Z768XY2Z660XYZ18*X^8*Y^8*Z^8+6*X^8*Y^6*Z^8+12*X^6*Y^6*Z^8+6*X^4*Y^12*Z^4+4*X^2*Y^15*Z^2+12*X^4*Y^10*Z^4+2*X^4*Y^9*Z^4+48*X^4*Y^8*Z^4+4*X^3*Y^9*Z^4+8*X^2*Y^12*Z^2+20*X^4*Y^6*Z^4+16*X^2*Y^10*Z^2+16*X^3*Y^6*Z^4+4*X^2*Y^9*Z^2+258*X^4*Y^4*Z^4+32*X^2*Y^8*Z^2+12*X^2*Y^6*Z^4+4*X*Y^9*Z^2+10*X^4*Y^3*Z^4+36*X*Y^9*Z+12*X^4*Y^2*Z^4+20*X^3*Y^3*Z^4+200*X^2*Y^6*Z^2+20*X^2*Y^5*Z^2+16*X*Y^6*Z^2+488*X^2*Y^4*Z^2+192*X*Y^6*Z+24*X^2*Y^3*Z^2+792*X^2*Y^2*Z^2+192*X*Y^4*Z+20*X*Y^3*Z^2+20*X^2*Y*Z^2+312*X*Y^3*Z+768*X*Y^2*Z+660*X*Y*Z

Algorithm definition

The algorithm ⟨8×28×32:4264⟩ is the (Kronecker) tensor product of ⟨2×4×4:26⟩ with ⟨4×7×8:164⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table