Description of fast matrix multiplication algorithm: ⟨8×27×30:3825⟩

Algorithm type

21X8Y8Z8+12X8Y6Z6+6X4Y12Z4+12X4Y10Z4+6X4Y10Z2+108X4Y8Z4+18X2Y12Z2+12X4Y6Z4+42X2Y10Z2+12XY12Z+24X4Y6Z3+12X2Y10Z+174X4Y4Z4+204X2Y8Z2+36XY10Z+24X4Y3Z3+12X4Y2Z4+60X2Y6Z2+144XY8Z+24X2Y5Z2+6X4Y2Z2+12X2Y5Z+594X2Y4Z2+60XY6Z+24X2Y3Z2+36XY5Z+450X2Y2Z2+540XY4Z+12X2Y2Z+24X2YZ2+48XY3Z+12X2YZ+720XY2Z+324XYZ21X8Y8Z812X8Y6Z66X4Y12Z412X4Y10Z46X4Y10Z2108X4Y8Z418X2Y12Z212X4Y6Z442X2Y10Z212XY12Z24X4Y6Z312X2Y10Z174X4Y4Z4204X2Y8Z236XY10Z24X4Y3Z312X4Y2Z460X2Y6Z2144XY8Z24X2Y5Z26X4Y2Z212X2Y5Z594X2Y4Z260XY6Z24X2Y3Z236XY5Z450X2Y2Z2540XY4Z12X2Y2Z24X2YZ248XY3Z12X2YZ720XY2Z324XYZ21*X^8*Y^8*Z^8+12*X^8*Y^6*Z^6+6*X^4*Y^12*Z^4+12*X^4*Y^10*Z^4+6*X^4*Y^10*Z^2+108*X^4*Y^8*Z^4+18*X^2*Y^12*Z^2+12*X^4*Y^6*Z^4+42*X^2*Y^10*Z^2+12*X*Y^12*Z+24*X^4*Y^6*Z^3+12*X^2*Y^10*Z+174*X^4*Y^4*Z^4+204*X^2*Y^8*Z^2+36*X*Y^10*Z+24*X^4*Y^3*Z^3+12*X^4*Y^2*Z^4+60*X^2*Y^6*Z^2+144*X*Y^8*Z+24*X^2*Y^5*Z^2+6*X^4*Y^2*Z^2+12*X^2*Y^5*Z+594*X^2*Y^4*Z^2+60*X*Y^6*Z+24*X^2*Y^3*Z^2+36*X*Y^5*Z+450*X^2*Y^2*Z^2+540*X*Y^4*Z+12*X^2*Y^2*Z+24*X^2*Y*Z^2+48*X*Y^3*Z+12*X^2*Y*Z+720*X*Y^2*Z+324*X*Y*Z

Algorithm definition

The algorithm ⟨8×27×30:3825⟩ is the (Kronecker) tensor product of ⟨2×3×3:15⟩ with ⟨4×9×10:255⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table