Description of fast matrix multiplication algorithm: ⟨8×26×32:3976⟩

Algorithm type

21X8Y8Z8+3X8Y6Z8+8X2Y18Z2+6X6Y6Z8+20X4Y12Z4+6X4Y10Z4+42X4Y8Z4+24X2Y12Z2+12X4Y6Z4+4X2Y10Z2+232X4Y4Z4+8X2Y8Z2+6X2Y6Z4+18X4Y3Z4+48XY9Z+6X4Y2Z4+36X3Y3Z4+186X2Y6Z2+36X2Y5Z2+364X2Y4Z2+144XY6Z+72X2Y3Z2+24XY5Z+754X2Y2Z2+48XY4Z+36XY3Z2+36X2YZ2+396XY3Z+672XY2Z+708XYZ21X8Y8Z83X8Y6Z88X2Y18Z26X6Y6Z820X4Y12Z46X4Y10Z442X4Y8Z424X2Y12Z212X4Y6Z44X2Y10Z2232X4Y4Z48X2Y8Z26X2Y6Z418X4Y3Z448XY9Z6X4Y2Z436X3Y3Z4186X2Y6Z236X2Y5Z2364X2Y4Z2144XY6Z72X2Y3Z224XY5Z754X2Y2Z248XY4Z36XY3Z236X2YZ2396XY3Z672XY2Z708XYZ21*X^8*Y^8*Z^8+3*X^8*Y^6*Z^8+8*X^2*Y^18*Z^2+6*X^6*Y^6*Z^8+20*X^4*Y^12*Z^4+6*X^4*Y^10*Z^4+42*X^4*Y^8*Z^4+24*X^2*Y^12*Z^2+12*X^4*Y^6*Z^4+4*X^2*Y^10*Z^2+232*X^4*Y^4*Z^4+8*X^2*Y^8*Z^2+6*X^2*Y^6*Z^4+18*X^4*Y^3*Z^4+48*X*Y^9*Z+6*X^4*Y^2*Z^4+36*X^3*Y^3*Z^4+186*X^2*Y^6*Z^2+36*X^2*Y^5*Z^2+364*X^2*Y^4*Z^2+144*X*Y^6*Z+72*X^2*Y^3*Z^2+24*X*Y^5*Z+754*X^2*Y^2*Z^2+48*X*Y^4*Z+36*X*Y^3*Z^2+36*X^2*Y*Z^2+396*X*Y^3*Z+672*X*Y^2*Z+708*X*Y*Z

Algorithm definition

The algorithm ⟨8×26×32:3976⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨4×13×16:568⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table