Description of fast matrix multiplication algorithm: ⟨8×25×28:3328⟩

Algorithm type

288X4Y8Z4+16X2Y8Z4+448X2Y8Z2+16XY8Z2+64X4Y4Z2+128X2Y4Z4+160XY8Z+176X2Y4Z2+64X2Y4Z+128XY4Z2+576X2Y2Z2+176XY4Z+32XY2Z2+128X2YZ+320XY2Z+256XYZ2+352XYZ288X4Y8Z416X2Y8Z4448X2Y8Z216XY8Z264X4Y4Z2128X2Y4Z4160XY8Z176X2Y4Z264X2Y4Z128XY4Z2576X2Y2Z2176XY4Z32XY2Z2128X2YZ320XY2Z256XYZ2352XYZ288*X^4*Y^8*Z^4+16*X^2*Y^8*Z^4+448*X^2*Y^8*Z^2+16*X*Y^8*Z^2+64*X^4*Y^4*Z^2+128*X^2*Y^4*Z^4+160*X*Y^8*Z+176*X^2*Y^4*Z^2+64*X^2*Y^4*Z+128*X*Y^4*Z^2+576*X^2*Y^2*Z^2+176*X*Y^4*Z+32*X*Y^2*Z^2+128*X^2*Y*Z+320*X*Y^2*Z+256*X*Y*Z^2+352*X*Y*Z

Algorithm definition

The algorithm ⟨8×25×28:3328⟩ is the (Kronecker) tensor product of ⟨2×5×4:32⟩ with ⟨4×5×7:104⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table