Description of fast matrix multiplication algorithm: ⟨8×24×32:3600⟩

Algorithm type

32X4Y12Z4+64X4Y10Z4+32X4Y8Z4+96X2Y12Z2+16X4Y6Z4+160X2Y10Z2+192X4Y4Z4+80X2Y8Z2+128X2Y6Z2+128X2Y5Z2+176X2Y4Z2+32X2Y2Z4+192XY6Z+32X2Y3Z2+320XY5Z+704X2Y2Z2+160XY4Z+128XY3Z+224XY2Z+64XYZ2+640XYZ32X4Y12Z464X4Y10Z432X4Y8Z496X2Y12Z216X4Y6Z4160X2Y10Z2192X4Y4Z480X2Y8Z2128X2Y6Z2128X2Y5Z2176X2Y4Z232X2Y2Z4192XY6Z32X2Y3Z2320XY5Z704X2Y2Z2160XY4Z128XY3Z224XY2Z64XYZ2640XYZ32*X^4*Y^12*Z^4+64*X^4*Y^10*Z^4+32*X^4*Y^8*Z^4+96*X^2*Y^12*Z^2+16*X^4*Y^6*Z^4+160*X^2*Y^10*Z^2+192*X^4*Y^4*Z^4+80*X^2*Y^8*Z^2+128*X^2*Y^6*Z^2+128*X^2*Y^5*Z^2+176*X^2*Y^4*Z^2+32*X^2*Y^2*Z^4+192*X*Y^6*Z+32*X^2*Y^3*Z^2+320*X*Y^5*Z+704*X^2*Y^2*Z^2+160*X*Y^4*Z+128*X*Y^3*Z+224*X*Y^2*Z+64*X*Y*Z^2+640*X*Y*Z

Algorithm definition

The algorithm ⟨8×24×32:3600⟩ is the (Kronecker) tensor product of ⟨2×6×8:75⟩ with ⟨4×4×4:48⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table