Description of fast matrix multiplication algorithm: ⟨8×24×28:3250⟩

Algorithm type

12X8Y8Z8+2X2Y18Z2+12X8Y6Z6+10X4Y12Z4+4X2Y15Z2+12X4Y10Z4+2X2Y15Z+6X4Y10Z2+4X4Y9Z3+16X4Y8Z4+8X2Y12Z2+16X2Y10Z2+16X4Y6Z3+8X2Y10Z+200X4Y4Z4+24XY9Z+20X4Y3Z3+12X4Y2Z4+142X2Y6Z2+20X2Y5Z2+6X4Y2Z2+10X2Y5Z+348X2Y4Z2+132XY6Z+4X2Y3Z2+2X2Y3Z+640X2Y2Z2+144XY4Z+8X2Y2Z+20X2YZ2+228XY3Z+10X2YZ+612XY2Z+540XYZ12X8Y8Z82X2Y18Z212X8Y6Z610X4Y12Z44X2Y15Z212X4Y10Z42X2Y15Z6X4Y10Z24X4Y9Z316X4Y8Z48X2Y12Z216X2Y10Z216X4Y6Z38X2Y10Z200X4Y4Z424XY9Z20X4Y3Z312X4Y2Z4142X2Y6Z220X2Y5Z26X4Y2Z210X2Y5Z348X2Y4Z2132XY6Z4X2Y3Z22X2Y3Z640X2Y2Z2144XY4Z8X2Y2Z20X2YZ2228XY3Z10X2YZ612XY2Z540XYZ12*X^8*Y^8*Z^8+2*X^2*Y^18*Z^2+12*X^8*Y^6*Z^6+10*X^4*Y^12*Z^4+4*X^2*Y^15*Z^2+12*X^4*Y^10*Z^4+2*X^2*Y^15*Z+6*X^4*Y^10*Z^2+4*X^4*Y^9*Z^3+16*X^4*Y^8*Z^4+8*X^2*Y^12*Z^2+16*X^2*Y^10*Z^2+16*X^4*Y^6*Z^3+8*X^2*Y^10*Z+200*X^4*Y^4*Z^4+24*X*Y^9*Z+20*X^4*Y^3*Z^3+12*X^4*Y^2*Z^4+142*X^2*Y^6*Z^2+20*X^2*Y^5*Z^2+6*X^4*Y^2*Z^2+10*X^2*Y^5*Z+348*X^2*Y^4*Z^2+132*X*Y^6*Z+4*X^2*Y^3*Z^2+2*X^2*Y^3*Z+640*X^2*Y^2*Z^2+144*X*Y^4*Z+8*X^2*Y^2*Z+20*X^2*Y*Z^2+228*X*Y^3*Z+10*X^2*Y*Z+612*X*Y^2*Z+540*X*Y*Z

Algorithm definition

The algorithm ⟨8×24×28:3250⟩ is the (Kronecker) tensor product of ⟨2×4×4:26⟩ with ⟨4×6×7:125⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table