Description of fast matrix multiplication algorithm: ⟨8×24×28:3168⟩

Algorithm type

80X4Y8Z4+48X2Y12Z2+64X2Y10Z2+208X4Y4Z4+144X2Y8Z2+32X4Y2Z4+112X2Y6Z2+256X2Y4Z2+96XY6Z+128XY5Z+688X2Y2Z2+288XY4Z+64X2YZ2+224XY3Z+192XY2Z+544XYZ80X4Y8Z448X2Y12Z264X2Y10Z2208X4Y4Z4144X2Y8Z232X4Y2Z4112X2Y6Z2256X2Y4Z296XY6Z128XY5Z688X2Y2Z2288XY4Z64X2YZ2224XY3Z192XY2Z544XYZ80*X^4*Y^8*Z^4+48*X^2*Y^12*Z^2+64*X^2*Y^10*Z^2+208*X^4*Y^4*Z^4+144*X^2*Y^8*Z^2+32*X^4*Y^2*Z^4+112*X^2*Y^6*Z^2+256*X^2*Y^4*Z^2+96*X*Y^6*Z+128*X*Y^5*Z+688*X^2*Y^2*Z^2+288*X*Y^4*Z+64*X^2*Y*Z^2+224*X*Y^3*Z+192*X*Y^2*Z+544*X*Y*Z

Algorithm definition

The algorithm ⟨8×24×28:3168⟩ is the (Kronecker) tensor product of ⟨2×6×7:66⟩ with ⟨4×4×4:48⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table