Description of fast matrix multiplication algorithm: ⟨8×24×28:3192⟩

Algorithm type

24X8Y16Z8+56X4Y16Z4+32X2Y16Z2+188X4Y8Z4+4X2Y12Z2+52X4Y4Z4+384X2Y8Z2+8X4Y2Z4+4X2Y6Z2+192XY8Z+356X2Y4Z2+24XY6Z+404X2Y2Z2+288XY4Z+48X2YZ2+24XY3Z+552XY2Z+552XYZ24X8Y16Z856X4Y16Z432X2Y16Z2188X4Y8Z44X2Y12Z252X4Y4Z4384X2Y8Z28X4Y2Z44X2Y6Z2192XY8Z356X2Y4Z224XY6Z404X2Y2Z2288XY4Z48X2YZ224XY3Z552XY2Z552XYZ24*X^8*Y^16*Z^8+56*X^4*Y^16*Z^4+32*X^2*Y^16*Z^2+188*X^4*Y^8*Z^4+4*X^2*Y^12*Z^2+52*X^4*Y^4*Z^4+384*X^2*Y^8*Z^2+8*X^4*Y^2*Z^4+4*X^2*Y^6*Z^2+192*X*Y^8*Z+356*X^2*Y^4*Z^2+24*X*Y^6*Z+404*X^2*Y^2*Z^2+288*X*Y^4*Z+48*X^2*Y*Z^2+24*X*Y^3*Z+552*X*Y^2*Z+552*X*Y*Z

Algorithm definition

The algorithm ⟨8×24×28:3192⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨4×12×14:456⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table