Description of fast matrix multiplication algorithm: ⟨8×24×25:2867⟩

Algorithm type

12X6Y8Z4+2X4Y8Z6+2X2Y8Z8+4X6Y8Z2+18X4Y8Z4+4X2Y12Z2+2X2Y8Z6+66X6Y4Z4+15X4Y4Z6+8X2Y8Z4+11X2Y4Z8+8XY12Z+24X3Y8Z2+4X2Y8Z3+4XY8Z4+38X6Y4Z2+107X4Y4Z4+22X4Y2Z6+8X3Y8Z+40X2Y8Z2+11X2Y4Z6+4XY8Z3+48X3Y6Z2+8X2Y6Z3+16XY9Z+16XY8Z2+8XY6Z4+88X6Y2Z2+20X4Y4Z2+44X4Y2Z4+16X3Y6Z+94X2Y6Z2+44X2Y4Z4+8XY8Z+8XY6Z3+24X3Y4Z2+12X2Y4Z3+32XY6Z2+4XY4Z4+110X4Y2Z2+40X3Y4Z+92X2Y4Z2+16X2Y3Z3+24XY6Z+4XY4Z3+64X3Y3Z+108X3Y2Z2+40X2Y4Z+32X2Y3Z2+26X2Y2Z3+16XY4Z2+18XY2Z4+68X3Y2Z+80X2Y3Z+277X2Y2Z2+36X2YZ3+44XY4Z+18XY2Z3+144X3YZ+40X2Y2Z+72X2YZ2+108XY3Z+72XY2Z2+180X2YZ+72XY2Z+162XYZ12X6Y8Z42X4Y8Z62X2Y8Z84X6Y8Z218X4Y8Z44X2Y12Z22X2Y8Z666X6Y4Z415X4Y4Z68X2Y8Z411X2Y4Z88XY12Z24X3Y8Z24X2Y8Z34XY8Z438X6Y4Z2107X4Y4Z422X4Y2Z68X3Y8Z40X2Y8Z211X2Y4Z64XY8Z348X3Y6Z28X2Y6Z316XY9Z16XY8Z28XY6Z488X6Y2Z220X4Y4Z244X4Y2Z416X3Y6Z94X2Y6Z244X2Y4Z48XY8Z8XY6Z324X3Y4Z212X2Y4Z332XY6Z24XY4Z4110X4Y2Z240X3Y4Z92X2Y4Z216X2Y3Z324XY6Z4XY4Z364X3Y3Z108X3Y2Z240X2Y4Z32X2Y3Z226X2Y2Z316XY4Z218XY2Z468X3Y2Z80X2Y3Z277X2Y2Z236X2YZ344XY4Z18XY2Z3144X3YZ40X2Y2Z72X2YZ2108XY3Z72XY2Z2180X2YZ72XY2Z162XYZ12*X^6*Y^8*Z^4+2*X^4*Y^8*Z^6+2*X^2*Y^8*Z^8+4*X^6*Y^8*Z^2+18*X^4*Y^8*Z^4+4*X^2*Y^12*Z^2+2*X^2*Y^8*Z^6+66*X^6*Y^4*Z^4+15*X^4*Y^4*Z^6+8*X^2*Y^8*Z^4+11*X^2*Y^4*Z^8+8*X*Y^12*Z+24*X^3*Y^8*Z^2+4*X^2*Y^8*Z^3+4*X*Y^8*Z^4+38*X^6*Y^4*Z^2+107*X^4*Y^4*Z^4+22*X^4*Y^2*Z^6+8*X^3*Y^8*Z+40*X^2*Y^8*Z^2+11*X^2*Y^4*Z^6+4*X*Y^8*Z^3+48*X^3*Y^6*Z^2+8*X^2*Y^6*Z^3+16*X*Y^9*Z+16*X*Y^8*Z^2+8*X*Y^6*Z^4+88*X^6*Y^2*Z^2+20*X^4*Y^4*Z^2+44*X^4*Y^2*Z^4+16*X^3*Y^6*Z+94*X^2*Y^6*Z^2+44*X^2*Y^4*Z^4+8*X*Y^8*Z+8*X*Y^6*Z^3+24*X^3*Y^4*Z^2+12*X^2*Y^4*Z^3+32*X*Y^6*Z^2+4*X*Y^4*Z^4+110*X^4*Y^2*Z^2+40*X^3*Y^4*Z+92*X^2*Y^4*Z^2+16*X^2*Y^3*Z^3+24*X*Y^6*Z+4*X*Y^4*Z^3+64*X^3*Y^3*Z+108*X^3*Y^2*Z^2+40*X^2*Y^4*Z+32*X^2*Y^3*Z^2+26*X^2*Y^2*Z^3+16*X*Y^4*Z^2+18*X*Y^2*Z^4+68*X^3*Y^2*Z+80*X^2*Y^3*Z+277*X^2*Y^2*Z^2+36*X^2*Y*Z^3+44*X*Y^4*Z+18*X*Y^2*Z^3+144*X^3*Y*Z+40*X^2*Y^2*Z+72*X^2*Y*Z^2+108*X*Y^3*Z+72*X*Y^2*Z^2+180*X^2*Y*Z+72*X*Y^2*Z+162*X*Y*Z

Algorithm definition

The algorithm ⟨8×24×25:2867⟩ is the (Kronecker) tensor product of ⟨2×6×5:47⟩ with ⟨4×4×5:61⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table