Description of fast matrix multiplication algorithm: ⟨8×22×22:2380⟩

Algorithm type

X8Y16Z6+2X8Y14Z8+X8Y16Z4+X4Y20Z4+9X8Y8Z8+4X4Y16Z4+2X8Y6Z8+2X6Y8Z8+4X4Y14Z4+6X4Y12Z4+3X4Y10Z4+14X4Y8Z4+6X4Y8Z3+12X4Y7Z4+7X4Y8Z2+X4Y6Z4+7X2Y10Z2+135X4Y4Z4+48X2Y8Z2+12X4Y3Z4+12X3Y4Z4+24X2Y7Z2+X4Y2Z4+81X2Y6Z2+2X2Y4Z4+18X2Y5Z2+114X2Y4Z2+6X2Y4Z+6X2Y3Z2+6XY5Z+591X2Y2Z2+144XY4Z+6X2YZ2+270XY3Z+12XY2Z2+180XY2Z+630XYZX8Y16Z62X8Y14Z8X8Y16Z4X4Y20Z49X8Y8Z84X4Y16Z42X8Y6Z82X6Y8Z84X4Y14Z46X4Y12Z43X4Y10Z414X4Y8Z46X4Y8Z312X4Y7Z47X4Y8Z2X4Y6Z47X2Y10Z2135X4Y4Z448X2Y8Z212X4Y3Z412X3Y4Z424X2Y7Z2X4Y2Z481X2Y6Z22X2Y4Z418X2Y5Z2114X2Y4Z26X2Y4Z6X2Y3Z26XY5Z591X2Y2Z2144XY4Z6X2YZ2270XY3Z12XY2Z2180XY2Z630XYZX^8*Y^16*Z^6+2*X^8*Y^14*Z^8+X^8*Y^16*Z^4+X^4*Y^20*Z^4+9*X^8*Y^8*Z^8+4*X^4*Y^16*Z^4+2*X^8*Y^6*Z^8+2*X^6*Y^8*Z^8+4*X^4*Y^14*Z^4+6*X^4*Y^12*Z^4+3*X^4*Y^10*Z^4+14*X^4*Y^8*Z^4+6*X^4*Y^8*Z^3+12*X^4*Y^7*Z^4+7*X^4*Y^8*Z^2+X^4*Y^6*Z^4+7*X^2*Y^10*Z^2+135*X^4*Y^4*Z^4+48*X^2*Y^8*Z^2+12*X^4*Y^3*Z^4+12*X^3*Y^4*Z^4+24*X^2*Y^7*Z^2+X^4*Y^2*Z^4+81*X^2*Y^6*Z^2+2*X^2*Y^4*Z^4+18*X^2*Y^5*Z^2+114*X^2*Y^4*Z^2+6*X^2*Y^4*Z+6*X^2*Y^3*Z^2+6*X*Y^5*Z+591*X^2*Y^2*Z^2+144*X*Y^4*Z+6*X^2*Y*Z^2+270*X*Y^3*Z+12*X*Y^2*Z^2+180*X*Y^2*Z+630*X*Y*Z

Algorithm definition

The algorithm ⟨8×22×22:2380⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨4×11×11:340⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table