Description of fast matrix multiplication algorithm: ⟨8×21×28:2835⟩

Algorithm type

6X4Y8Z6+15X4Y8Z4+6X4Y6Z6+6X4Y8Z2+15X4Y6Z4+54X4Y4Z6+2X2Y4Z8+24X2Y8Z3+2X2Y3Z8+6X4Y6Z2+135X4Y4Z4+60X2Y8Z2+12X2Y4Z6+18X2Y2Z8+24X2Y8Z+36X2Y6Z3+12X2Y3Z6+54X4Y4Z2+90X2Y6Z2+12X2Y4Z4+108X2Y2Z6+36X2Y6Z+12X2Y4Z3+12X2Y3Z4+8XY4Z4+40X2Y4Z2+108X2Y2Z4+48XY4Z3+12XY3Z4+12X2Y4Z+10X2Y3Z2+132X2Y2Z3+48XY4Z2+72XY3Z3+4XY2Z4+420X2Y2Z2+40XY4Z+72XY3Z2+24XY2Z3+44XYZ4+132X2Y2Z+60XY3Z+24XY2Z2+264XYZ3+20XY2Z+264XYZ2+220XYZ6X4Y8Z615X4Y8Z46X4Y6Z66X4Y8Z215X4Y6Z454X4Y4Z62X2Y4Z824X2Y8Z32X2Y3Z86X4Y6Z2135X4Y4Z460X2Y8Z212X2Y4Z618X2Y2Z824X2Y8Z36X2Y6Z312X2Y3Z654X4Y4Z290X2Y6Z212X2Y4Z4108X2Y2Z636X2Y6Z12X2Y4Z312X2Y3Z48XY4Z440X2Y4Z2108X2Y2Z448XY4Z312XY3Z412X2Y4Z10X2Y3Z2132X2Y2Z348XY4Z272XY3Z34XY2Z4420X2Y2Z240XY4Z72XY3Z224XY2Z344XYZ4132X2Y2Z60XY3Z24XY2Z2264XYZ320XY2Z264XYZ2220XYZ6*X^4*Y^8*Z^6+15*X^4*Y^8*Z^4+6*X^4*Y^6*Z^6+6*X^4*Y^8*Z^2+15*X^4*Y^6*Z^4+54*X^4*Y^4*Z^6+2*X^2*Y^4*Z^8+24*X^2*Y^8*Z^3+2*X^2*Y^3*Z^8+6*X^4*Y^6*Z^2+135*X^4*Y^4*Z^4+60*X^2*Y^8*Z^2+12*X^2*Y^4*Z^6+18*X^2*Y^2*Z^8+24*X^2*Y^8*Z+36*X^2*Y^6*Z^3+12*X^2*Y^3*Z^6+54*X^4*Y^4*Z^2+90*X^2*Y^6*Z^2+12*X^2*Y^4*Z^4+108*X^2*Y^2*Z^6+36*X^2*Y^6*Z+12*X^2*Y^4*Z^3+12*X^2*Y^3*Z^4+8*X*Y^4*Z^4+40*X^2*Y^4*Z^2+108*X^2*Y^2*Z^4+48*X*Y^4*Z^3+12*X*Y^3*Z^4+12*X^2*Y^4*Z+10*X^2*Y^3*Z^2+132*X^2*Y^2*Z^3+48*X*Y^4*Z^2+72*X*Y^3*Z^3+4*X*Y^2*Z^4+420*X^2*Y^2*Z^2+40*X*Y^4*Z+72*X*Y^3*Z^2+24*X*Y^2*Z^3+44*X*Y*Z^4+132*X^2*Y^2*Z+60*X*Y^3*Z+24*X*Y^2*Z^2+264*X*Y*Z^3+20*X*Y^2*Z+264*X*Y*Z^2+220*X*Y*Z

Algorithm definition

The algorithm ⟨8×21×28:2835⟩ is the (Kronecker) tensor product of ⟨2×7×4:45⟩ with ⟨4×3×7:63⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table