Description of fast matrix multiplication algorithm: ⟨8×21×24:2430⟩

Algorithm type

18X4Y8Z4+18X4Y6Z4+162X4Y4Z4+90X2Y8Z2+126X2Y6Z2+18X2Y4Z4+72XY8Z+18X2Y3Z4+198X2Y4Z2+162X2Y2Z4+108XY6Z+72XY4Z2+396X2Y2Z2+36XY4Z+108XY3Z2+36XY2Z2+396XY2Z+396XYZ218X4Y8Z418X4Y6Z4162X4Y4Z490X2Y8Z2126X2Y6Z218X2Y4Z472XY8Z18X2Y3Z4198X2Y4Z2162X2Y2Z4108XY6Z72XY4Z2396X2Y2Z236XY4Z108XY3Z236XY2Z2396XY2Z396XYZ218*X^4*Y^8*Z^4+18*X^4*Y^6*Z^4+162*X^4*Y^4*Z^4+90*X^2*Y^8*Z^2+126*X^2*Y^6*Z^2+18*X^2*Y^4*Z^4+72*X*Y^8*Z+18*X^2*Y^3*Z^4+198*X^2*Y^4*Z^2+162*X^2*Y^2*Z^4+108*X*Y^6*Z+72*X*Y^4*Z^2+396*X^2*Y^2*Z^2+36*X*Y^4*Z+108*X*Y^3*Z^2+36*X*Y^2*Z^2+396*X*Y^2*Z+396*X*Y*Z^2

Algorithm definition

The algorithm ⟨8×21×24:2430⟩ is the (Kronecker) tensor product of ⟨2×7×4:45⟩ with ⟨4×3×6:54⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table