Description of fast matrix multiplication algorithm: ⟨8×21×21:2160⟩

Algorithm type

3X4Y10Z2+6X4Y8Z2+24X4Y6Z4+6X2Y10Z+3X4Y6Z2+132X4Y4Z4+3X2Y8Z2+3X2Y6Z4+12X2Y8Z+3X4Y4Z2+3X4Y2Z4+66X2Y6Z2+3X2Y4Z4+3X2Y2Z6+6XY8Z+6X2Y6Z+6XY6Z2+36X4Y2Z2+6X2Y5Z+327X2Y4Z2+39X2Y2Z4+36XY6Z+18X2Y4Z+48X2Y3Z2+6XY4Z2+6X2Y3Z+360X2Y2Z2+132XY4Z+6XY3Z2+6XY2Z3+78X2Y2Z+6X2YZ2+36XY3Z+84XY2Z2+6XYZ3+72X2YZ+306XY2Z+78XYZ2+180XYZ3X4Y10Z26X4Y8Z224X4Y6Z46X2Y10Z3X4Y6Z2132X4Y4Z43X2Y8Z23X2Y6Z412X2Y8Z3X4Y4Z23X4Y2Z466X2Y6Z23X2Y4Z43X2Y2Z66XY8Z6X2Y6Z6XY6Z236X4Y2Z26X2Y5Z327X2Y4Z239X2Y2Z436XY6Z18X2Y4Z48X2Y3Z26XY4Z26X2Y3Z360X2Y2Z2132XY4Z6XY3Z26XY2Z378X2Y2Z6X2YZ236XY3Z84XY2Z26XYZ372X2YZ306XY2Z78XYZ2180XYZ3*X^4*Y^10*Z^2+6*X^4*Y^8*Z^2+24*X^4*Y^6*Z^4+6*X^2*Y^10*Z+3*X^4*Y^6*Z^2+132*X^4*Y^4*Z^4+3*X^2*Y^8*Z^2+3*X^2*Y^6*Z^4+12*X^2*Y^8*Z+3*X^4*Y^4*Z^2+3*X^4*Y^2*Z^4+66*X^2*Y^6*Z^2+3*X^2*Y^4*Z^4+3*X^2*Y^2*Z^6+6*X*Y^8*Z+6*X^2*Y^6*Z+6*X*Y^6*Z^2+36*X^4*Y^2*Z^2+6*X^2*Y^5*Z+327*X^2*Y^4*Z^2+39*X^2*Y^2*Z^4+36*X*Y^6*Z+18*X^2*Y^4*Z+48*X^2*Y^3*Z^2+6*X*Y^4*Z^2+6*X^2*Y^3*Z+360*X^2*Y^2*Z^2+132*X*Y^4*Z+6*X*Y^3*Z^2+6*X*Y^2*Z^3+78*X^2*Y^2*Z+6*X^2*Y*Z^2+36*X*Y^3*Z+84*X*Y^2*Z^2+6*X*Y*Z^3+72*X^2*Y*Z+306*X*Y^2*Z+78*X*Y*Z^2+180*X*Y*Z

Algorithm definition

The algorithm ⟨8×21×21:2160⟩ is the (Kronecker) tensor product of ⟨2×3×3:15⟩ with ⟨4×7×7:144⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table