Description of fast matrix multiplication algorithm: ⟨8×20×30:2920⟩

Algorithm type

20X6Y6Z8+8X3Y9Z4+10X4Y6Z4+20X3Y6Z4+4X2Y9Z2+180X4Y4Z4+10X2Y2Z8+12XY9Z+32X3Y3Z4+112X2Y6Z2+210X2Y4Z2+42XY6Z+4XY3Z4+16X2Y3Z2+10XY2Z4+738X2Y2Z2+30XY4Z+16XYZ4+228XY3Z+498XY2Z+720XYZ20X6Y6Z88X3Y9Z410X4Y6Z420X3Y6Z44X2Y9Z2180X4Y4Z410X2Y2Z812XY9Z32X3Y3Z4112X2Y6Z2210X2Y4Z242XY6Z4XY3Z416X2Y3Z210XY2Z4738X2Y2Z230XY4Z16XYZ4228XY3Z498XY2Z720XYZ20*X^6*Y^6*Z^8+8*X^3*Y^9*Z^4+10*X^4*Y^6*Z^4+20*X^3*Y^6*Z^4+4*X^2*Y^9*Z^2+180*X^4*Y^4*Z^4+10*X^2*Y^2*Z^8+12*X*Y^9*Z+32*X^3*Y^3*Z^4+112*X^2*Y^6*Z^2+210*X^2*Y^4*Z^2+42*X*Y^6*Z+4*X*Y^3*Z^4+16*X^2*Y^3*Z^2+10*X*Y^2*Z^4+738*X^2*Y^2*Z^2+30*X*Y^4*Z+16*X*Y*Z^4+228*X*Y^3*Z+498*X*Y^2*Z+720*X*Y*Z

Algorithm definition

The algorithm ⟨8×20×30:2920⟩ is the (Kronecker) tensor product of ⟨2×5×5:40⟩ with ⟨4×4×6:73⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table