Description of fast matrix multiplication algorithm: ⟨8×20×28:2640⟩

Algorithm type

32X4Y10Z4+32X4Y8Z4+16X4Y6Z4+96X2Y10Z2+160X4Y4Z4+112X2Y8Z2+16X4Y2Z4+64X2Y6Z2+64X2Y5Z2+160X2Y4Z2+32X2Y2Z4+32X2Y3Z2+192XY5Z+544X2Y2Z2+224XY4Z+32X2YZ2+128XY3Z+192XY2Z+64XYZ2+448XYZ32X4Y10Z432X4Y8Z416X4Y6Z496X2Y10Z2160X4Y4Z4112X2Y8Z216X4Y2Z464X2Y6Z264X2Y5Z2160X2Y4Z232X2Y2Z432X2Y3Z2192XY5Z544X2Y2Z2224XY4Z32X2YZ2128XY3Z192XY2Z64XYZ2448XYZ32*X^4*Y^10*Z^4+32*X^4*Y^8*Z^4+16*X^4*Y^6*Z^4+96*X^2*Y^10*Z^2+160*X^4*Y^4*Z^4+112*X^2*Y^8*Z^2+16*X^4*Y^2*Z^4+64*X^2*Y^6*Z^2+64*X^2*Y^5*Z^2+160*X^2*Y^4*Z^2+32*X^2*Y^2*Z^4+32*X^2*Y^3*Z^2+192*X*Y^5*Z+544*X^2*Y^2*Z^2+224*X*Y^4*Z+32*X^2*Y*Z^2+128*X*Y^3*Z+192*X*Y^2*Z+64*X*Y*Z^2+448*X*Y*Z

Algorithm definition

The algorithm ⟨8×20×28:2640⟩ is the (Kronecker) tensor product of ⟨2×5×7:55⟩ with ⟨4×4×4:48⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table