Description of fast matrix multiplication algorithm: ⟨8×20×28:2744⟩

Algorithm type

4X8Y12Z8+10X8Y8Z8+5X4Y16Z4+11X4Y12Z4+7X4Y8Z4+48X4Y6Z4+139X4Y4Z4+60X2Y8Z2+132X2Y6Z2+84X2Y4Z2+144X2Y3Z2+588X2Y2Z2+180XY4Z+396XY3Z+252XY2Z+684XYZ4X8Y12Z810X8Y8Z85X4Y16Z411X4Y12Z47X4Y8Z448X4Y6Z4139X4Y4Z460X2Y8Z2132X2Y6Z284X2Y4Z2144X2Y3Z2588X2Y2Z2180XY4Z396XY3Z252XY2Z684XYZ4*X^8*Y^12*Z^8+10*X^8*Y^8*Z^8+5*X^4*Y^16*Z^4+11*X^4*Y^12*Z^4+7*X^4*Y^8*Z^4+48*X^4*Y^6*Z^4+139*X^4*Y^4*Z^4+60*X^2*Y^8*Z^2+132*X^2*Y^6*Z^2+84*X^2*Y^4*Z^2+144*X^2*Y^3*Z^2+588*X^2*Y^2*Z^2+180*X*Y^4*Z+396*X*Y^3*Z+252*X*Y^2*Z+684*X*Y*Z

Algorithm definition

The algorithm ⟨8×20×28:2744⟩ is the (Kronecker) tensor product of ⟨2×5×7:56⟩ with ⟨4×4×4:49⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table