Description of fast matrix multiplication algorithm: ⟨8×20×24:2352⟩

Algorithm type

X8Y16Z8+5X8Y12Z8+X4Y20Z4+6X8Y8Z8+6X4Y16Z4+8X4Y12Z4+20X4Y8Z4+60X4Y6Z4+12X2Y10Z2+85X4Y4Z4+72X2Y8Z2+96X2Y6Z2+132X2Y4Z2+180X2Y3Z2+36XY5Z+372X2Y2Z2+216XY4Z+288XY3Z+288XY2Z+468XYZX8Y16Z85X8Y12Z8X4Y20Z46X8Y8Z86X4Y16Z48X4Y12Z420X4Y8Z460X4Y6Z412X2Y10Z285X4Y4Z472X2Y8Z296X2Y6Z2132X2Y4Z2180X2Y3Z236XY5Z372X2Y2Z2216XY4Z288XY3Z288XY2Z468XYZX^8*Y^16*Z^8+5*X^8*Y^12*Z^8+X^4*Y^20*Z^4+6*X^8*Y^8*Z^8+6*X^4*Y^16*Z^4+8*X^4*Y^12*Z^4+20*X^4*Y^8*Z^4+60*X^4*Y^6*Z^4+12*X^2*Y^10*Z^2+85*X^4*Y^4*Z^4+72*X^2*Y^8*Z^2+96*X^2*Y^6*Z^2+132*X^2*Y^4*Z^2+180*X^2*Y^3*Z^2+36*X*Y^5*Z+372*X^2*Y^2*Z^2+216*X*Y^4*Z+288*X*Y^3*Z+288*X*Y^2*Z+468*X*Y*Z

Algorithm definition

The algorithm ⟨8×20×24:2352⟩ is the (Kronecker) tensor product of ⟨2×5×6:48⟩ with ⟨4×4×4:49⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table