Description of fast matrix multiplication algorithm: ⟨8×18×25:2209⟩

Algorithm type

26X4Y8Z4+8X2Y12Z2+4X2Y8Z4+16XY12Z+6X6Y4Z2+145X4Y4Z4+64X2Y8Z2+4X2Y4Z6+32XY9Z+8XY8Z2+33X6Y2Z2+6X4Y4Z2+11X4Y2Z4+148X2Y6Z2+38X2Y4Z4+22X2Y2Z6+24XY8Z+16XY6Z2+33X4Y2Z2+12X3Y4Z+132X2Y4Z2+88X2Y2Z4+64XY6Z+8XY4Z3+24X3Y3Z+12X2Y4Z+8X2Y3Z2+40XY4Z2+16XY3Z3+12X3Y2Z+24X2Y3Z+293X2Y2Z2+44XY4Z+64XY3Z2+8XY2Z3+54X3YZ+12X2Y2Z+18X2YZ2+112XY3Z+68XY2Z2+36XYZ3+54X2YZ+128XY2Z+144XYZ2+90XYZ26X4Y8Z48X2Y12Z24X2Y8Z416XY12Z6X6Y4Z2145X4Y4Z464X2Y8Z24X2Y4Z632XY9Z8XY8Z233X6Y2Z26X4Y4Z211X4Y2Z4148X2Y6Z238X2Y4Z422X2Y2Z624XY8Z16XY6Z233X4Y2Z212X3Y4Z132X2Y4Z288X2Y2Z464XY6Z8XY4Z324X3Y3Z12X2Y4Z8X2Y3Z240XY4Z216XY3Z312X3Y2Z24X2Y3Z293X2Y2Z244XY4Z64XY3Z28XY2Z354X3YZ12X2Y2Z18X2YZ2112XY3Z68XY2Z236XYZ354X2YZ128XY2Z144XYZ290XYZ26*X^4*Y^8*Z^4+8*X^2*Y^12*Z^2+4*X^2*Y^8*Z^4+16*X*Y^12*Z+6*X^6*Y^4*Z^2+145*X^4*Y^4*Z^4+64*X^2*Y^8*Z^2+4*X^2*Y^4*Z^6+32*X*Y^9*Z+8*X*Y^8*Z^2+33*X^6*Y^2*Z^2+6*X^4*Y^4*Z^2+11*X^4*Y^2*Z^4+148*X^2*Y^6*Z^2+38*X^2*Y^4*Z^4+22*X^2*Y^2*Z^6+24*X*Y^8*Z+16*X*Y^6*Z^2+33*X^4*Y^2*Z^2+12*X^3*Y^4*Z+132*X^2*Y^4*Z^2+88*X^2*Y^2*Z^4+64*X*Y^6*Z+8*X*Y^4*Z^3+24*X^3*Y^3*Z+12*X^2*Y^4*Z+8*X^2*Y^3*Z^2+40*X*Y^4*Z^2+16*X*Y^3*Z^3+12*X^3*Y^2*Z+24*X^2*Y^3*Z+293*X^2*Y^2*Z^2+44*X*Y^4*Z+64*X*Y^3*Z^2+8*X*Y^2*Z^3+54*X^3*Y*Z+12*X^2*Y^2*Z+18*X^2*Y*Z^2+112*X*Y^3*Z+68*X*Y^2*Z^2+36*X*Y*Z^3+54*X^2*Y*Z+128*X*Y^2*Z+144*X*Y*Z^2+90*X*Y*Z

Algorithm definition

The algorithm ⟨8×18×25:2209⟩ is the (Kronecker) tensor product of ⟨2×6×5:47⟩ with ⟨4×3×5:47⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table