Description of fast matrix multiplication algorithm: ⟨8×18×21:1845⟩

Algorithm type

135X4Y4Z4+3X6Y2Z2+6X4Y2Z4+3X2Y6Z2+9X2Y4Z4+30X4Y2Z2+351X2Y4Z2+36X2Y2Z4+6XY6Z+18XY4Z2+6X3Y2Z+348X2Y2Z2+162XY4Z+6X3YZ+60X2Y2Z+12X2YZ2+6XY3Z+90XY2Z2+60X2YZ+294XY2Z+72XYZ2+132XYZ135X4Y4Z43X6Y2Z26X4Y2Z43X2Y6Z29X2Y4Z430X4Y2Z2351X2Y4Z236X2Y2Z46XY6Z18XY4Z26X3Y2Z348X2Y2Z2162XY4Z6X3YZ60X2Y2Z12X2YZ26XY3Z90XY2Z260X2YZ294XY2Z72XYZ2132XYZ135*X^4*Y^4*Z^4+3*X^6*Y^2*Z^2+6*X^4*Y^2*Z^4+3*X^2*Y^6*Z^2+9*X^2*Y^4*Z^4+30*X^4*Y^2*Z^2+351*X^2*Y^4*Z^2+36*X^2*Y^2*Z^4+6*X*Y^6*Z+18*X*Y^4*Z^2+6*X^3*Y^2*Z+348*X^2*Y^2*Z^2+162*X*Y^4*Z+6*X^3*Y*Z+60*X^2*Y^2*Z+12*X^2*Y*Z^2+6*X*Y^3*Z+90*X*Y^2*Z^2+60*X^2*Y*Z+294*X*Y^2*Z+72*X*Y*Z^2+132*X*Y*Z

Algorithm definition

The algorithm ⟨8×18×21:1845⟩ is the (Kronecker) tensor product of ⟨2×3×3:15⟩ with ⟨4×6×7:123⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table