Description of fast matrix multiplication algorithm: ⟨8×16×25:1952⟩

Algorithm type

48X6Y8Z4+8X4Y8Z6+8X2Y8Z8+16X6Y8Z2+72X4Y8Z4+16X2Y12Z2+8X2Y8Z6+16X4Y4Z6+32X2Y8Z4+16XY12Z+48X3Y8Z2+8X2Y8Z3+8XY8Z4+64X6Y4Z2+32X4Y4Z4+16X3Y8Z+88X2Y8Z2+8XY8Z3+32XY8Z2+80X4Y4Z2+16XY8Z+16X2Y4Z3+64X3Y4Z+104X2Y4Z2+96X3Y2Z2+80X2Y4Z+16X2Y2Z3+16XY2Z4+32X3Y2Z+144X2Y2Z2+32X2YZ3+72XY4Z+16XY2Z3+128X3YZ+64X2YZ2+32XY3Z+64XY2Z2+160X2YZ+32XY2Z+144XYZ48X6Y8Z48X4Y8Z68X2Y8Z816X6Y8Z272X4Y8Z416X2Y12Z28X2Y8Z616X4Y4Z632X2Y8Z416XY12Z48X3Y8Z28X2Y8Z38XY8Z464X6Y4Z232X4Y4Z416X3Y8Z88X2Y8Z28XY8Z332XY8Z280X4Y4Z216XY8Z16X2Y4Z364X3Y4Z104X2Y4Z296X3Y2Z280X2Y4Z16X2Y2Z316XY2Z432X3Y2Z144X2Y2Z232X2YZ372XY4Z16XY2Z3128X3YZ64X2YZ232XY3Z64XY2Z2160X2YZ32XY2Z144XYZ48*X^6*Y^8*Z^4+8*X^4*Y^8*Z^6+8*X^2*Y^8*Z^8+16*X^6*Y^8*Z^2+72*X^4*Y^8*Z^4+16*X^2*Y^12*Z^2+8*X^2*Y^8*Z^6+16*X^4*Y^4*Z^6+32*X^2*Y^8*Z^4+16*X*Y^12*Z+48*X^3*Y^8*Z^2+8*X^2*Y^8*Z^3+8*X*Y^8*Z^4+64*X^6*Y^4*Z^2+32*X^4*Y^4*Z^4+16*X^3*Y^8*Z+88*X^2*Y^8*Z^2+8*X*Y^8*Z^3+32*X*Y^8*Z^2+80*X^4*Y^4*Z^2+16*X*Y^8*Z+16*X^2*Y^4*Z^3+64*X^3*Y^4*Z+104*X^2*Y^4*Z^2+96*X^3*Y^2*Z^2+80*X^2*Y^4*Z+16*X^2*Y^2*Z^3+16*X*Y^2*Z^4+32*X^3*Y^2*Z+144*X^2*Y^2*Z^2+32*X^2*Y*Z^3+72*X*Y^4*Z+16*X*Y^2*Z^3+128*X^3*Y*Z+64*X^2*Y*Z^2+32*X*Y^3*Z+64*X*Y^2*Z^2+160*X^2*Y*Z+32*X*Y^2*Z+144*X*Y*Z

Algorithm definition

The algorithm ⟨8×16×25:1952⟩ is the (Kronecker) tensor product of ⟨2×4×5:32⟩ with ⟨4×4×5:61⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table