Description of fast matrix multiplication algorithm: ⟨8×16×24:1898⟩

Algorithm type

12X6Y6Z8+4X3Y9Z4+6X4Y6Z4+16X3Y6Z4+2X2Y9Z2+108X4Y4Z4+6X2Y2Z8+6XY9Z+20X3Y3Z4+62X2Y6Z2+162X2Y4Z2+30XY6Z+2XY3Z4+10X2Y3Z2+8XY2Z4+450X2Y2Z2+24XY4Z+10XYZ4+120XY3Z+390XY2Z+450XYZ12X6Y6Z84X3Y9Z46X4Y6Z416X3Y6Z42X2Y9Z2108X4Y4Z46X2Y2Z86XY9Z20X3Y3Z462X2Y6Z2162X2Y4Z230XY6Z2XY3Z410X2Y3Z28XY2Z4450X2Y2Z224XY4Z10XYZ4120XY3Z390XY2Z450XYZ12*X^6*Y^6*Z^8+4*X^3*Y^9*Z^4+6*X^4*Y^6*Z^4+16*X^3*Y^6*Z^4+2*X^2*Y^9*Z^2+108*X^4*Y^4*Z^4+6*X^2*Y^2*Z^8+6*X*Y^9*Z+20*X^3*Y^3*Z^4+62*X^2*Y^6*Z^2+162*X^2*Y^4*Z^2+30*X*Y^6*Z+2*X*Y^3*Z^4+10*X^2*Y^3*Z^2+8*X*Y^2*Z^4+450*X^2*Y^2*Z^2+24*X*Y^4*Z+10*X*Y*Z^4+120*X*Y^3*Z+390*X*Y^2*Z+450*X*Y*Z

Algorithm definition

The algorithm ⟨8×16×24:1898⟩ is the (Kronecker) tensor product of ⟨2×4×4:26⟩ with ⟨4×4×6:73⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table